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Actuarial Statistics - II 
Introduction 
In this section, we study claim models, survival function and Life Tables. The individual 
claim model and the sum of the claims of many insured individuals are discussed. With the 
assumption that the claims of individuals are assumed to be independent, we obtain the 
probability distributions of these factors. This will be useful in assessing claims that involve 
one or many components. Survival function is a useful function in the study of lifetime of any 
individual or any objects that will expire in due course of time. Using survival distribution 
various other functions are obtained. They are, Force of Mortality, probability of an 
individual lives until a specified age, probability of death between two age points, etc. Life 
Table is a table which shows, for each age, what the probability is that a person of that age 
will die before completion of that age. Various other components of this table are discussed. 
This table is very useful in the study of actuarial premium calculation. 
 
Models for individual claims and their sums 
 
The term general insurance essentially applies to an insurance risk that is not a life insurance 
or health insurance risk, and so the term covers familiar forms of personal insurance such as 
motor vehicle insurance, home and contents insurance, and travel insurance. Let us focus on 
how a motor vehicle insurance policy typically operates from an insurer’s point of view. 
Under such a policy, the insured party pays an amount of money (the premium) to the insurer 
at the start of the period of insurance cover, which we assume to be one year. The insured 
party will make a claim under the insurance policy each time the insured party has an 
accident during the year that results in damage to the motor vehicle, and hence requires repair 
costs. There are two sources of uncertainty for the insurer: how many claims will the insured 
party make, and, if claims are made, what will be the amounts of those claims? Thus, if the 
insurer were to build a probabilistic model to represent its claims outgo under the policy, the 
model would require a component that modelled the number of claims and another that 
modelled the amounts of those claims. This is a general framework that applies to modelling 
claims outgo under any general insurance policy, not just motor vehicle insurance, and we 
will describe these. However let us begin with assumption that there will be only one claim if 
any in the given period. That is, during the period there could be one claim of amount b with 
probability q and there is no claim with probability 1-q.  The claim random variable, X, has a 
probability function given by  
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The expected value of the claim is E[X]= b q   and E[X2]= b2 q   hence, Var[X]= b2 q(1-q). 
The random variable X can also be written as  X = I b  where I is a Bernoulli random variable 
which takes 0 and 1 as values is can take. We also refer it as an indicator function, because it 
indicates the occurrence, I=1, or nonoccurrence, I =0 of given event or claim.  
We seek more general models in which the amount of claim is also a random variable and 
several claims can occur in a period. Health, automobile, and other property and liability 
coverages provide immediate examples. Here we postulate X = I B, where X is the claim 
number random variable for the period, B gives the total claim amount incurred during the 
period.  and I is the indicator for the event that at least one claim has occurred. 
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Sometimes the claim random variable could be mixed random variable. Also claim amount 
need not be fixed, it could vary continuously. 
 
Consider an example of amount of claim is a random variable. If maximum claim is Rs 
2,00,000 which occurs with probability 0.1 and no claim occurs with probability 0.5. Claim 
amount is positive but less than 2,00,000 with probability 0.4 and the distribution of the claim 
has the following conditional distribution function 
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Here the claim distribution can be written as 
     F(x)  =  Pr(X≤ x ) = Pr(Claim ≤ x )  
              =  Pr(Claim ≤ x | No claim) P(No claim)  

 + Pr(Claim ≤ x |  positive claim but less than 2,00,000) Pr (Positive claim but less                        
than 2,00,000) + Pr(Claim ≤ x | Full claim) P(Full claim). 

 
     
Hence the claim distribution function is  
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Here we observe that P(X=0) = P(No claim ) = F(0) = 0.5 , 
and P(X=2,00,000)=P(Full claim)= F(2,00,000)-F(2,00,000-)=1-0.9 = 0.1, 
P(Claim amount is at most 50000) = F(50000) = 0.5+0.4[1-(50000/200000)2] = 0.875, 
P( Claim amount is at least 100000) = 1-F(100000) = 1-{0.5+0.4[1-1/4]}=0.2. 
 
Expected claim amount is 
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ሾܺሿܧ ൌ 0.4 ൈ 66,666.67  200000 ൈ 0.1 

 
                                                  = 46,666.67 
 
Sums of independent random variables 
In the individual risk model, claims of an insuring organization re modelled as the sum of the 
claims of many insured individuals. The claims of individuals are assumed to be independent 
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in most applications. The probability distribution of sum of random variables can be obtained 
by the method of convolution.  
 
Let X and Y are two individual claims with distribution function FX (.) and FY (.) respectively 
and are independently distributed. Then the distribution function or cumulative distribution 
function (cdf) of X+Y is  
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is called the convolution of the cdfs of FX (.) and FY (.). 
Another approach is to use moment generating functions whenever they exist.   
 
Suppose that X follows Uniform(0,1) and Y follows Uniform(0,2)  and are independent. Then 
the distribution function of cdf of X +Y: 
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The sum can be extended to any number of fixed random variables.  
 
For example, if X, Y and Z are independent exponential random variables with parameters 1, 
2, and 3 respectively. Further, they are independent. Then the probability density function of 
X+Y+Z is  
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If X and Y are discrete random variables with probability functions or pmfs pX (.) and pY (.) 
respectively. We find for the cdf of X +Y and the corresponding density through convolution 
is  
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Let X follow Poisson(ߣ ) and Y follows  Poisson(ߤ) be independent random variables.  
For s = 0,1,2, . . .,  p(s) = P(X+Y =s) is 
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When number of individuals are more, that is when n is large we can use normal 
approximation for sum of the random variable on the basis of central limit theorem.  
The usual statement of the theorem is for a sequence of independent and identically 
distributed random variables, X1, X2,  .....Xn,   E[Xi]= μ and Var[Xi]= σ2.  
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With തܺ ൌ భାభା⋯ା


, √݊	ሺ തܺ െ  is standard normal variate. That is it has mean 0 and ߪ/ሻߤ

variance 1. 
 
Survival Function 
Many insurance policies provide a benefit on the death of the policyholder. When an 
insurance company issues such a policy, the policyholder’s date of death is unknown, so the 
insurer does not know exactly when the death benefit will be payable. The problems 
associated with life insurance involves the variability in the claim made. In other types of 
insurance the amount of the claim is also a random variable. The central difficulty in issuing 
life insurance is that of determining the length of the future life of the insured.  In order to 
estimate the time at which a death benefit is payable, the insurer needs a model of human 
mortality, from which probabilities of death at particular ages can be calculated. Let X  
denote the random variable which represents the future lifetime of a newborn. Assume that 
the distribution function of X is absolutely continuous. The survival function of X, denoted by 
s(x) is defined by the formula s(x) = P[X x] = P[X x] where the last equality follows from 
the continuity assumption. The assumption that s(0) = 1 will always be made. The survival 
function in Reliability Theory is defined as the reliability function. 
 
Let us say, we are interested in studying the life of persons who have attained certain age, say 
x. For convenience let (x) denote a life aged x. The death of (x) can occur at any greater than 
x, and we denote the future lifetime of a life aged x by T(x). That is, life time of a person after 
the current age of x is T(x) and x +T(x) represent age-at-death random variable for (x).  

 
In the past there has been some interest in modelling survival functions in an analytic way. 
The simplest model is that due to Abraham DeMoivre. He assumed that s(x) = 1 x/ω  for 0 
< x  <ω where ω is the limiting age by which all have died. The DeMoivre law is simply the 
assertion that X has the uniform distribution on the interval (0, ω). 
 Life insurance is usually issued on a person who has already attained a certain age x. In 
many insurance problems we are interested in the probability of survival rather than death. 
The survival function for (x) is P[T(x) t]. According to the standard notation, set tpx = 
P[T(x) t]. This is the survival function for (x), that is, probability that (x) will attain age x+t. 
Let  tqx = P[T(x) t], the distribution function of life from age x. This is the probability that 
(x) will die within t years. When t = 1 the prefix is omitted and one just writes px and qx 

respectively.  That is the probability that a person with age x will survive more than one year 
is px and the probability that a person with age x will die within one year is qx. 
tpx = P[T(x) t] = P[X x + t X x] = s(x+t)/s(x).   
This gives another relation  P[X x + t] = s(x+t) = s(x) tpx .   
 
Similarly, tqx = P[T(x) ≤t] = P[X ≤x + t X x] = 1- s(x+t)/s(x).  Hence the density function 

of T(x) is given by fT(x)(t) =   s(x + t) /s(x) 
 
Further,  t+upx = P[T(x) t+u] = s(x+t+u)/s(x)  
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                      	Further, 	௧ା௨௫ ൌ ܲሾܶሺݔሻ  ݐ  ሿݑ ൌ ௦ሺ௫ା௧ା௨ሻ
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                                                 ൌ ௦ሺ௫ା௧ା௨ሻ
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Note that since a life of currently aged x scurvies zero years is sure, we get, 0px=1. 
Further, all lives eventually die we get 	lim௧→ஶ 	௧௫ ൌ 0. 
Suppose px denotes 1px, we can write for integer t ≥1, t px=  px  px+1  ......... px+t-1 . 

 
There is one more special symbol. Set tu qx = P[t T(x) t + u] = P[T(x) t + u] - P[T(x) t] 
which represents the probability that (x) survives at least t and no more than t + u years. 
Again, if u = 1 one writes t qx. The relations t uqx = t+uqx tqx = tpx t+upx  follow immediately 
from the definition. 
 
The curtate future lifetime of (x), denoted by K(x), is defined by the relation K(x) = [T(x)]. 
Here [t] is the greatest integer function. Note that K(x) is a discrete random variable with 
density P[K(x) = k] = P[k T(x) k + 1]. The curtate lifetime, K(x), represents the number of 
complete future years lived by (x). That is, P[K(x) = k] is the probability of (x) living exactly 
more than k year but dies before (k+1)st year after age x. 
 
 
Force of mortality: 
 
We denote the force of mortality for those attaining age x by μ(x) and define it as  

ሻݔሺߤ ൌ 	 lim
ௗ௫	→శ

1
ݔ݀
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Using the definition of Tx, we see that above expression is equivalent as 
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In terms of survival function, ` 
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Hence,    ߤሺݔሻ ൌ ሺ௫ሻ

ଵିிሺ௫ሻ
    

The force of mortality represents the death rate per unit age per unit survivor for those 
attaining age x. 
 
 Intuitively the force of mortality is the instantaneous ‘probability’ that someone exactly age x 
dies at age x. (In component reliability theory this function is often referred to as the hazard 
rate.) Integrating both sides of this equality gives the useful relation 

ሻݔሺݏ ൌ ൛െݔ݁ ݐ݀	ሻݐሺߤ	
௫
 ൟ. 

In reliability theory, the study of the survival probabilities of manufactured parts and systems, 
μ(x) is called the failure rate function or hazard rate function. 
 
If the force of mortality is constant the life random variable X has an exponential distribution. 
This is directly in accord with the “memoryless” property of exponential random variables. 
This memoryless property also has the interpretation that a used article is as good as a new 
one. For human lives (and most manufactured components) this is a fairly poor assumption, 
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at least over the long term. The force of mortality usually is increasing, although this is not 
always so. There are many distributions for certain parameters exhibit increasing force of 
mortality. However, in actuarial science we estimate this function based on the population 
pertaining to the area of study.  
 
Using the relation between survival function and force of mortality given above, we observe 
that   - μ(x) =  d log s(x). Integrating this expression from x to x + n, we have 
 

െ ݕሻ݀ݕሺߤ
௫ା
௫ ൌ log ቂ

௦ሺ௫ାሻ
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Hence,  	 	௫ ൌ ൫െݔ݁ ݕሻ݀ݕሺߤ
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This is equivalent to 	 	௫ ൌ ൫െݔ݁ ݔሺߤ  ݐ݀	ሻݐ


 	൯. 

 
In particular,  to convert to the notation we defined earlier, we can also write as  
                                     	 	௫ ൌ ൫െݔ݁ ݐሻ݀ݐሺߤ
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In addition, 	 ሻݔሺܨ ൌ 1 െ ሻݔሺݏ ൌ 1 െ ൫െݔ݁ ݐሻ݀ݐሺߤ
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 	൯  is the probability distribution 

function of X. The density function of X can be obtained by differentiating F(x). That is 
                                                  

	 ሻݔሺ′ܨ ൌ ݂ሺݔሻ ൌ ൫െݔ݁ ݐሻ݀ݐሺߤ
௫
 	൯		ߤሺݔሻ ൌ 	 			ߤሺݔሻ.  

 
Let FT(x)(t) and fT(x)(t) denote, respectively, the probability distribution function and 
probability density function of T(x), the future lifetime of (x).  Also note that FT(x)(t) = tqx ;  

therefore, ்݂ ሺ௫ሻሺݐሻ ൌ 	
ௗ

ௗ௧
	௧ݍ௫ ൌ 	

ௗ

ௗ௧
ቀ1 െ
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                                              ൌ		 ௦ሺ௫ା௧ሻ
௦ሺ௫ሻ

	ቂ–	
௦′ሺ௫ା௧ሻ

௦ሺ௫ା௧ሻ
ቃ ൌ 	௧௫	ߤሺݔ  	ݐ				ሻݐ  0. 

Thus tpx μ(x+t) dt is the probability that (x) dies between t and t +dt,  and  
 	௧௫	ߤሺݔ  ݐሻ݀ݐ
∞

 	ൌ 1  
where the upper limit on the integral is written as positive infinity to indicate there is no 
upper bound. 
 

We also get      
ௗ

ௗ௧
	ሺ1 െ 	௧௫	ሻ ൌ 	െ	

ௗ

ௗ௧
	 	௧௫ ൌ 	 	௧௫	ߤሺݔ   	ሻݐ

This equivalent form is useful in several developments in actuarial science. 
  
 
Life Tables 
 
In practice the survival distribution is estimated by compiling mortality data in the form of a 
life table.  Given a survival model, with survival probabilities tpx, we can construct the life 
table for the model from some initial age x0 to a maximum age ω. We define a function {lx} 
for x0 ≤ x ≤ ω as follows. Let lx0 be an arbitrary positive number (called the radix of the 
table) and, for 0 ≤ t ≤ ω − x0, define lx0+t = lx0  t px0 . 
 
From this definition we see that for x0 ≤ x ≤ x + t ≤ ω, 



7 
 

                                 lx+t = lx0 x+t−x0 
p x0

  =  lx0   x−x0
p x0

  t p x   

              = lx   t px , 
so that   t p x  = lx +t / l x . 
 
For any x ≥ x0, we can interpret lx+t as the expected number of survivors to age x + t out of lx 
independent individuals aged x. This interpretation is more natural if lx is an integer, and 
follows because the number of survivors to age x + t is a random variable with a binomial 
distribution with parameters lx and tpx. That is, suppose we have lx independent lives aged x, 
and each life has a probability tpx of surviving to age x + t. Then the number of survivors to 
age x + t is a binomial random variable, Bt , say, with parameters lx and tpx. The expected  
value of the number of survivors is then    E[Bt] = lx tpx = lx+t .  
We always use the table in the form ly/lx which is why the radix of the table is arbitrary – it 
would make no difference to the survival model if all the lx values were multiplied by 100, 
for example. We can use the lx  function to calculate survival probabilities. We can also 
calculate mortality probabilities. For example, 
 

ଷݍ    ൌ 1 െ	 యభ
యబ
	ൌ యబିయభ

యబ
 

    ܽ݊݀			ଵହ|ଷݍସ ൌ 	ଵହସ		ଷݍହହ ൌ 	
ఱఱ
రబ
	ቀ1 െ

ఴఱ
ఱఱ
ቁ ൌ

ఱఱିఴఱ
రబ

 . 

 
In principle, a life table is defined for all x from the initial age, x0, to the limiting age, ω. In 
practice, it is very common for a life table to be presented, and in some cases even defined, at 
integer ages only. In this form, the life table is a useful way of summarizing a lifetime 
distribution since, with a single column of numbers, it allows us to calculate probabilities of 
surviving or dying over integer numbers of years starting from an integer age. 
 It is usual for a life table, tabulated at integer ages, to show the values of dx, where dx=lx − 
lx+1, in addition to lx, as these are used to compute qx, we have  

݀௫ ൌ ݈௫ 	൬1 െ
݈௫ାଵ
݈௫

൰ ൌ ݈௫	ሺ1 െ ௫ሻ ൌ ݈௫ݍ௫	. 

We can also arrive at this relationship if we interpret dx as the expected number of deaths in 
the year of age x to x + 1 out of lx lives aged exactly x, so that, using the binomial distribution 
again   ݀௫ ൌ ݈௫ݍ௫	. 
Further, it is easy to see that  ndx = lx lx+n. 
 
Imagine that at time 0 there are l0  newborns. Here l0  is called the radix of the life table and is 
usually taken to be some large number such as 10,000,000. These newborns are observed and 
lx is the number of the original newborns who are still alive at age x. Similarly ndx denotes the 
number of the group of newborns alive at age x who die before reaching age x + n. As usual, 
when n = 1 it is suppressed in the notation. 
It is easy to see that  ndx = lx lx+n. 
 
 
Summary of notations used in the Life Tables 
tqx  = 1- tpx = P[T(x) ≤ t] = P[X ≤ x + t | X > x] = 1- s(x+t)/s(x),  1qx = qx 
lx    = number of persons aged x living. 
ndx  = denotes the number of the group of newborns alive at age x who die before reaching   

age x + n. 
dx = number of persons dying between ages x; x +1, that is dx = lx - lx +1 = lx qx . 
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In the cohort life-table model, imagine a number l0 of individuals born simultaneously and 
followed until death, further based on the data on dx we determine lx and probabilities qx. This 
is the deterministic procedure.  
In the probabilistic model,  given the number l0 we can determine the probabilities qx and lx 
using survival function s(x). 
 
Practical 2: Computation of various components of life tables 
 
Given l0 = 100000 and column dx only, complete the table. 
 
The table is completed using the formula  lx +1 = lx - dx  and  qx =dx / lx . 
 
Age 

x lx dx 
 

qx 
 

Age x lx dx 
 

qx 

0  100000  2629  0.0263    40 92315 295 0.0032

1  97371  141  0.0014    41 92020 332 0.00361

2  97230  107  0.0011    42 91688 408 0.00445

3  97123  63  0.0006    43 91280 414 0.00454

4  97060  63  0.0006    44 90866 464 0.00511

5  96997  69  0.0007    45 90402 532 0.00588

6  96928  69  0.0007    46 89870 587 0.00653

7  96859  52  0.0005    47 89283 680 0.00762

8  96807  54  0.0006    48 88603 702 0.00792

9  96753  51  0.0005    49 87901 782 0.0089

10  96702  33  0.0003    50 87119 841 0.00965

11  96669  40  0.0004    51 86278 885 0.01026

12  96629  47  0.0005    52 85393 974 0.01141

13  96582  61  0.0006    53 84419 1082 0.01282

14  96521  86  0.0009    54 83337 1088 0.01306

15  96435  105  0.0011    55 82249 1213 0.01475

16  96330  83  0.0009    56 81036 1344 0.01659

17  96247  125  0.0013    57 79692 1423 0.01786

18  96122  133  0.0014    58 78269 1476 0.01886

19  95989  149  0.0016    59 76793 1572 0.02047

20  95840  154  0.0016    60 75221 1696 0.02255

21  95686  138  0.0014    61 73525 1784 0.02426

22  95548  163  0.0017    62 71741 1933 0.02694

23  95385  168  0.0018    63 69808 2022 0.02897

24  95217  166  0.0017    64 67786 2186 0.03225

25  95051  151  0.0016    65 65600 2261 0.03447

26  94900  149  0.0016    66 63339 2371 0.03743
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27  94751  166  0.0018    67 60968 2426 0.03979

28  94585  157  0.0017    68 58542 2356 0.04024

29  94428  133  0.0014    69 56186 2702 0.04809

30  94295  160  0.0017    70 53484 2548 0.04764

31  94135  149  0.0016    71 50936 2677 0.05256

32  93986  152  0.0016    72 48259 2811 0.05825

33  93834  160  0.0017    73 45448 2763 0.06079

34  93674  199  0.0021    74 42685 2710 0.06349

35  93475  187  0.002    75 39975 2848 0.07124

36  93288  212  0.0023    76 37127 2832 0.07628

37  93076  228  0.0024    77 34295 2835 0.08267

38  92848  272  0.0029    78 31460 2803 0.0891

39  92576  261  0.0028            

 
Given the number l0=100000, using probabilistic method we determine entire Table.  
First determine  qx=1-s(x+1)/s(x) for all x. Then using the formula dx = qx lx , and  
 lx +1 = lx - dx . 
 
 

 


