Frequently asked questions:

1. Define the model under study for 2³ Factorial experiment conducted under RBD

Suppose that 2^3 Factorial experiment is conducted in a RBD with r replicates (Blocks) . The model under study is

$$y_{(x_1,x_2,x_3)j} = \mu + o(x_1,x_2,x_3) + \beta_j + \mathcal{E}_{(x_1,x_2,x_3)j}, \quad (x_1, x_2, x_3: \text{ Oor 1}), \ J = 1,2,\dots,r$$

Where

 $y_{(x_1,x_2,x_3)j}$ - observations from jth replicate receiving the treatment combination(x_1, x_2x_3), (x_1, x_2, x_3 : O or 1) μ = general effect $\alpha(x_1, x_2, x_3)$ =effect of the treatment combination (x_1, x_2, x_3)

 β_j = jth replicate effect

 $\mathcal{E}_{(x_1,x_2,x_3)j}$ =error term

2. Give the expression for main and interaction effects in 2³ Factorial experiment conducted

under RBD

[A] = [abc] - [bc] + [ac] - [c] + [ab] - [b] + [a] - [1] [B] = [abc] + [bc] - [ac] - [c] + [ab] + [b] - [a] - [1] [C] = [abc] + [bc] + [ac] + [c] - [ab] - [b] - [a] - [1] [AB] = [abc] - [bc] - [ac] + [c] + [ab] - [b] - [a] + [1] [AC] = [abc] - [bc] - [ac] - [c] - [ab] + [b] - [a] + [1] [BC] = [abc] + [bc] - [ac] - [c] - [ab] - [b] + [a] + [1] [ABC] = [abc] - [bc] - [ac] + [c] - [ab] + [b] + [a] - [1] [abc], [bc], [ac], [c], [ab], [b], [a] and [1] represent the total yield of all the replicates receiving the constraints of the replicates receiving the constraints of the replicates received the

treatment combinations treatments (1), (*a*), (*b*), (*c*), (*ab*), (*ac*), (*bc*) and (*abc*) respectively.

3. State the hypothesis to be tested in 2³ Factorial experiment conducted under RBD

 H_a: A =0 (i.e.. Main effect of A is absent) Against the alternative

Ha1: A#0 (i.e.. Main effect of A is present)

- H_b: B=0 (i.e.. Main effect of B is absent)
 Against the alternative
 H_b1: B#0 (i.e.. Main effect of B is present)
- H_c: C =0 (i.e.. Main effect of C is absent)
 Against the alternative
 H_c1: C #0 (i.e.. Main effect of C is present)
- 4. H_{ab}: AB =0 (i.e.. Interaction effect A B is absent)
 Against the alternative
 H_{ab}1: AB #0 (i.e.. Interaction effect A B is present)
- 5. H_{ac} : AC =0 (i.e.. Interaction effect A C is absent) Against the alternative H_{ac} 1:AC #0 (i.e.. Interaction effect A C is present)
- 6. H_{cc} : BC =0 (i.e.. Interaction effect BC is absent) Against the alternative H_{cc} 1: BC #0 (i.e.. Interaction effect BC is present)
- H_{abc}: ABC =0 (i.e.. Three factor Interaction effect A BC is absent) Against the alternative H_{abc}1: A BC#0 (i.e.. Three factor Interaction effect A BC is present) We can also test simultaneously

4. Write the test statistics and their distribution to test the different factorial effects in 2^3 Factorial experiment conducted under RBD

- a. to test H_a : A=0 (i.e.. Main effect of A is absent), the statistics is
- $F_A = \frac{[A]^2 / 8r}{ESS / 7(r-1)}$ which follow F distribution with 1 and 37(r-1) degree of freedom
- b. to test H_a : B=0 (i.e.. Main effect of B is absent), the statistics is

 $F_B = \frac{[B]^2 / 8r}{ESS / 7(r-1)}$ which follow F distribution with 1 and 7(r-1) degree of freedom c. To test H_c : C=0 (i.e., Main effect of C is absent), the test statistics is

$$F_{c} = \frac{[C]^{2} / 8r}{ESS / 7(r-1)}$$
 which follow F distribution with 1 and 7(r-1) degree of freedom

d. To test H_{ab} : AB=0 (i.e., Interaction effect AB is absent), the test statistics is

$$F_{AB} = \frac{\left[AB\right]^2 / 8r}{ESS / 7(r-1)}$$
 which follow F distribution with 1 and 7(r-1) degree of freedom

e. To test H_{ac} : AC =0 (i.e., Interaction effect AC is absent), the test statistics is

$$F_{AC} = \frac{[AC]^2 / 8r}{ESS / 7(r-1)}$$
 which follow F distribution with 1 and 7(r-1) degree of freedom

f. To test H_{tc} : BC =0 (i.e., Interaction effect BC is absent), the test statistics is

$$F_{BC} = \frac{[BC]^2 / 8r}{ESS / 7(r-1)}$$
 which follow F distribution with 1 and 7(r-1) degree of freedom

g. To test Hac: ABC =0 (i.e.. Three factor Interaction effect A BC is absent), the test statistics is

 $F_{ABC} = \frac{[ABC]^2 / 8r}{ESS / 7(r-1)}$ which follow F distribution with 1 and 7(r-1) degree of freedom

Where the notations carry the usual meaning.

5. Write the Analysis of Variance Table for 2³ Factorial expression carried out in RBD with r replicates

Source of Variation	Degre e of freedo m	Sum of squares	Mean sum of squares	F ratio	Critical value
Main factor A	1	$SSA = [A]^2 / 8r$	MSSA=SSA/1	$F_A = \frac{\left[A\right]^2 / 8r}{MESS}$	F _{(1,7(r-1))}
Main factor B	1	$SSB = [B]^2 / 8r$	MSSB=SSB/1	$F_B = \frac{\left[B\right]^2 / 8r}{MESS}$	F _{(1,7(r-1))}
Main factor C	1	$SSC = \left[C\right]^2 / 8r$	MSSC=SSC/1	$F_C = \frac{\left[C\right]^2 / 8r}{MESS}$	F _{(1,7(r-1))}

Interaction AB	1	$SSAB = [AB]^2 / 8r$	MSSAB= SSAB/1	$F_{AB} = \frac{[AB]^2 / 8r}{MESS} F_{(1)}$	1 , 7(r-1))
Interaction AC	1	$SSAC = [AC]^2 / 8r$	MSSAC=SSA C/1	$F_{AC} = \frac{[AC]^2 / 8r}{MESS} F_{(1)}$	1 , 7(r-1))
Interaction BC	1	$SSBC = [BC]^2 / 8r$	MSSBC=SSB C/1	$F_{BC} = \frac{[BC]^2 / 8r}{MESS} F_{(1)}$	1 , 7(r-1))
Interaction ABC	1	$SSABC = [ABC]^2 / 8r$	MSSABC=SS ABC/1	$F_{ABC} = \frac{\left[ABC\right]^2}{MESS} = \frac{\left[ABC\right]^2}{MESS}$	1 , 7(r-1))
Replicate	r-1	$BSS = \frac{\sum_{k=1}^{r} Y_{()k}^{2}}{8} - \frac{G^{2}}{8r}$	MBSS= BSS/(r-1)	MBSS/MESS F _{(r}	r-1 , 7(r-1))
Error	7(r-1)	ESS	MESS= ESS/7(r-1)		
Total	8r-1	$TSS = \sum_{(x1,x2,X_3)=0}^{1} \sum_{k=1}^{r} y_{(x1,x2,X_3)k}^2 - \frac{G}{8r}$			

6. Explain Yates technique to compute factorial effects in 2³ Factorial experiment:

Step1 1: Write the treatment combination in the first column in the order, (1), (a), (b),(ab), (c), (ac), (bc) and (abc)

Step 2: Against each treatment combination, in the second column write the corresponding total yield from all the replicates.

Step 3: The entries in the third column are as follows: the first half entries are obtained by writing down in order, the pairwise sums of the values in column 2 and the second half is obtained by writing in the same order the pairwise differences of

the values in the second column, the difference is taken such that the first number a pair is subtracted from the second number of the pair.

Step 4: The whole of the procedure explained in step 3 is repeated on the 3rds column and 4th column is derived.

Step 5: The procedure explained in step 3 is repeated on the 4^{th} column and 5^{th} column is derived

The first entry in the last column gives the grand total, the other entries in the last column are the total of the main effects and interaction effects corresponding to the treatment combinations denoted in the first column of the table.

The	entire	procedure	is ex	plained	in the	e following	g table

Treatme	Total	Column	Column 4	Factorial	Factori
nt	yield	3		effects	al
Combin					effects
ation					
1	[1]	[1]+ [a]	[1]+ [a]+ [b]+ [ab]	[1]+ [a]+ [b]+	Grand
				[ab]+ [c]+	Total=
				[ab]+ [bc]+	G
				[abc	
а	[a]	[b]+ [ab]	[c]+ [ab]+ [bc]+	[a]- [1]+ [ab]-	[A]
			[abc	[b]+ [ab]-[c]+	
				[abc]-[bc]	
b	[b]	[c]+ [ab]	[a]- [1]+ [ab]- [b]	[b]+ [ab]-{ [1]+	[B]
				[a]}+ [bc]+	
				[abc-{[c]+	
				[ab]}	
ab	[ab]	[bc]+	[ab]-[c]+ [abc]-[bc]	[ab]- [b]-{ [a]-	[AB]
		[abc		[1]}+ [abc]-	
				[bc]-{ [ab]-[c]}	
С	[c]	[a]- [1]	[b]+ [ab]-{ [1]+ [a]}	[c]+ [ab]+	[C]
				[bc]+ [abc]-{	
				[1]+ [a]+ [b]+	
				[ab]}	
ac	[ab]	[ab]- [b]	[bc]+ [abc-{[c]+	[ab]-[c]+ [abc]-	[AC]
			[ab]}	[bc]-{ [a]- [1]+	
				[ab]- [b]}	

bc	[bc]	[ab]-[c]	[ab]- [b]-{ [a]- [1]}	[bc]+ [abc-	[BC]
				{[c]+ [ab]}-{	
				[b]+ [ab]-{ [1]+	
				[a]}}	
abc	[abc]	[abc]-	[abc]-[bc]-{ [ab]-	[abc]-[bc]-{	[ABC]
		[bc]	[c]}	[ab]-[c]}-{ [ab]-	
				[b]-{ [a]- [1]}}	

7. Write the expression for estimates and sum of squares of factorial effects in a 2^3 factorial experiment conducted in RBD with r replicates

Factorial	Best estimates	Sum of
effects		squares
[A]	[A]/4r	$SSA = [A]^2 / 8r$
[B]	[B]/4r	$SSB = [B]^2 / 8r$
[C]	[C]/4r	$SSC = \left[C\right]^2 / 8r$
[AB]	[AB]/4r	$SSAB = [AB]^2 / 8r$
[AC]	[AC]/4r	$SSAC = [AC]^2 / 8r$
[BC]	[BC]/4r	$SSBC = [BC]^2 / 8r$
[ABC]	[ABC]/4r	$SSABC = [ABC]^2 / 8r$

8. Given the following data compute the factorial effects using Yates` technique and give their estimates

Given a factorial experiment with three factors N, P and K each at two levels, the design and yield per plot are given below.

<u>Replicate 1</u>	<u>Replicate 2</u>	<u>Replicate 3</u>
np 30	1 44	pk 20
nk 32	nk 34	1 24
pk 24	p 27	npk 30
1 25	npk 36	k 32
n 46	k 32	n 28
k 39	n 30	p 26
p 32	np 30	np 36
npk 42	pk 36	nk 28

Yates table:

Treatment	Total	Cloumn	Column 4	Factorial	Best estimates
Combination	yield	3		efects	
1	93	197	378	Grand Total = 763	
n	104	181	385	[N] = 41	63.58333
Р	85	197	22	[P] =-25	3.416667
np	96	188	19	[NP] =37	-2.08333
k	103	11	-16	[K] =7	3.083333
nk	94	11	-9	[NK] =-3	0.583333
pk	80	-9	0	[PK] =7	-0.25
npk	108	28	37	[NPK] =37	0.583333

9. Write the ANOVA Table for the data given in Q. No. 8

Calculations:

$$TSS = \sum_{(x1,x2,X_3)=0}^{1} \sum_{k=1}^{r} y_{(x1,x2,X_3)k}^2 - \frac{G^2}{8r} = 25227 - 763/24 = 25195.21$$

BSS = 195437/8-(763/24) = 24397.83

[Each replicate total is 270, 269, 224]

 $\mathsf{ESS} = 102650.94\text{-}9740.1875\text{-}39900.06\text{-}227639.06\text{-}588.0625$

=24783.56

Analysis of Variance Table.

Source of Variation	Degre e of freedo m	Sum of squares	Mean sum of squares	F ratio	Critical value
Main factor N	1	SSN = =70.04167	70.04	1.68	F _{(1,14)=} 1.44
Main factor P	1	SSP = =26.04167	26.04	0.63	1.44
Main factor K	1	SSK =2.041667	2.04	0.049	1.44
Interaction NP	1	SSNP = 57.0416	57.04	1.37	1.44
Interaction NK	1	SSNK = 0.375	0.375	9.00	1.44
Interaction PK	1	SSPK = 2.041667	2.04	0.049	1.44
Interaction NPK	1	SSNPK = 57.04167	57.04	1.37	1.44
Replicate	r-1=2	$BSS = \frac{\sum_{k=1}^{r} Y_{()k}^{2}}{8} - \frac{G^{2}}{8r} = 24397.83$	12198.92	293.07	F _{(2,14)=1.53}
Error	7(r- 1)=14	ESS=582.75	41.625		
Total	23	$TSS = \sum_{(x1,x2)=0}^{1} \sum_{k=1}^{r} y_{(x1,x2)k}^{2} - \frac{G^{2}}{4r}$ =25195.21			

10. Complete the following ANOVA Table and interpret the table:

Source of Variation	Degree of freedom	Sum of squares	Mean sum of squares	F ratio	Critical value
Main factor N	?	70.04167	?	?	1.44
Main factor P	?	26.04167	?	?	?
Main factor K	?	2.041667	?	?	?
Interaction NP	?	57.0416	?	?	?
Interaction NK	?	0.375	?	?	?
Interaction PK	?	2.041667	?	?	?
Interaction NPK	?	57.04167	?	?	?
Replicate	3	?	?	?	1.53
Error	?	?	41.625		
Total	31	25195.21			

Ans:

Source of Variation	Degree of freedom	Sum of squares	Mean sum of squares	F ratio	Critical value
Main factor N	1	700	700	3.34	1.44
Main factor P	1	300	300	1.43	1.44
Main factor K	1	100	100	0.48	1.44
Interaction NP	1	500	500	2.38	1.44
Interaction NK	1	500	500	2.38	1.44
Interaction PK	1	300	300	1.43	1.44
Interaction NPK	1	450	450	2.15	1.44
Replicate	3	750	250	1.19	1.53
Error	21	4400	209.52		
Total	31	8000			

From the table observe that the main effect P, the main effect K, interaction effect PK and replication effect are significant (present)in the data and all the other factorial effects are insignificant.