Subject	Statistics
Semester	04
Paper no	10
Paper Name	Testing of Hypothesis
Topic no	13
Topic name	LRTP for Testing Equality of Two Variances of Two Univariate Normal Distributions
SME	Ms Shubharekha
ID	Ms Varsha Shetty

E-Learning Module on LRTP for Testing **Equality of Two** Variances of Two **Univariate Normal** Distributions

Learning Objectives

By the end of this session, you will be able to:

 Explain LRTP to test the difference between the variances of two Normal populations when the means are known and unknown

Describe the procedure to test for the equality of two population variances

Introduction **Application:1** To test the null hypothesis $H_0: \sigma_1 = \sigma_2 = \sigma$ against the alternative hypothesis $H_1: \sigma_1 \neq \sigma_2$ where σ_1 and σ_2 are the unknown standard deviations of the two Normal populations Respective means μ_1 and μ_2 are unknown

Let $\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}$ be a random sample of size **n** from a Normal population with mean $\boldsymbol{\mu_1}$, standard deviation $\boldsymbol{\sigma_1}$ and

Let $\mathbf{x_{1}}, \mathbf{x_{2}}, \dots, \mathbf{x_{m}}$ be a random sample of size m from a Normal population with mean $\boldsymbol{\mu_{2}}$ and standard deviation $\boldsymbol{\sigma_{2}}$

Then the likelihood ratio $\mathbf{\lambda}$ is given by

 $Sup \quad L(x_1, x_2..., x_n) \ L(y_1, y_2..., y_m)$ $\lambda = \frac{\sigma_1 = \sigma_2 = \sigma, \mu_1, \mu_2}{Sup} L(x_1, x_2 \dots x_n) L(y_1, y_2 \dots y_m)$ $\sigma_{1}, \sigma_{2}, \mu_{1}, \mu_{2}$

Since all the observations are independent of each other

$$\begin{split} & \mathcal{Sup}(\frac{1}{\sigma^{2}})^{\frac{n}{2}}(\frac{1}{\sqrt{2\pi}})^{n}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(xi-\mu_{i})^{2}}(\frac{1}{\sigma^{2}})^{\frac{m}{2}}(\frac{1}{\sqrt{2\pi}})^{m}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(yi-\mu_{2})^{2}}\\ & \mathcal{Sup}_{\sigma_{i},\sigma_{2},\mu_{1},\mu_{2}}(\frac{1}{\sigma^{2}})^{\frac{n}{2}}(\frac{1}{\sqrt{2\pi}})^{n}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(xi-\mu_{i})^{2}}(\frac{1}{\sigma^{2}})^{\frac{m}{2}}(\frac{1}{\sqrt{2\pi}})^{m}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(yi-\mu_{2})^{2}}\\ & \mathcal{Sup}_{\mu_{i},\mu_{2}}(\frac{1}{\sigma^{2}})^{\frac{n}{2}}(\frac{1}{\sqrt{2\pi}})^{n}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(xi-\mu_{i})^{2}}(\frac{1}{\sigma^{2}})^{\frac{m}{2}}(\frac{1}{\sqrt{2\pi}})^{m}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(yi-\mu_{2})^{2}} \end{split}$$

Under the null hypothesis the m.l.e's are obtained as

$$\hat{\mu}_1 = \overline{x}$$
, $\hat{\mu}_2 = \overline{y}$ and $\hat{\sigma}^2 = \frac{\sum (x_i - \overline{x})^2 + \sum (y_i - \overline{y})^2}{m + n} = \frac{ns_1^2 + ms_2^2}{m + n}$

Otherwise the m.l.e's are $\hat{\mu}_1 = \overline{x}$, $\hat{\mu}_2 = \overline{y}$ and

$$\hat{\sigma}_{1}^{2} = s_{1}^{2}$$
 , $\hat{\sigma}_{2}^{2} = s_{2}^{2}$

where
$$s_1^2 = \frac{\sum (xi - \overline{x})^2}{n}$$
, and $s_2^2 = \frac{\sum (yi - \overline{y})^2}{m}$,

$$\lambda = \frac{(\frac{1}{\hat{\sigma}^2})^{\frac{m+n}{2}}(\frac{1}{\sqrt{2\pi}})^{n+m}e^{\frac{-1}{2\hat{\sigma}^2}[\sum_{i}(xi-\bar{x})^2 + \sum_{i}(yi-\bar{y})^2]}}{(\frac{1}{\hat{\sigma}_1^2})^{\frac{n}{2}}(\frac{1}{\sqrt{2\pi}})^{n+m}e^{\frac{-1}{2\hat{\sigma}_1^2}\sum_{i}(xi-\bar{x})^2}(\frac{1}{\hat{\sigma}_1^2})^{\frac{m}{2}}e^{\frac{-1}{2\hat{\sigma}_2^2}\sum_{i}(yi-\bar{y})^2}}$$

$$\lambda = \frac{\left[\frac{1}{ms_1^2 + ms_2^2}}{\left(\frac{1}{s_1^2}\right)^2 e^{\frac{-1}{2s_1^2}\sum_{i=1}^{2} (xi-\bar{x})^2} \left(\frac{1}{s_1^2}\right)^{\frac{m}{2}} e^{\frac{-1}{2s_1^2}\sum_{i=1}^{2} (xi-\bar{x})^2} \left(\frac{1}{s_1^2}\right)^{\frac{m}{2}} e^{\frac{-1}{2s_2^2}\sum_{i=1}^{2} (yi-\bar{y})^2}$$

$$\lambda = \left[\frac{1}{ns_1^2 + ms_2^2}\right]^{\frac{m+n}{2}} (s_1^2)^{\frac{n}{2}} (s_2^2)^{\frac{m}{2}} (m+n)^{\frac{m+n}{2}}$$

$$= \left[\frac{1}{ns_1^2 + ms_2^2}\right]^{\frac{m+n}{2}} (ns_1^2)^{\frac{n}{2}} (ms_2^2)^{\frac{m}{2}} \frac{(m+n)^{\frac{m+n}{2}}}{\frac{n}{n^2}m^{\frac{m}{2}}}$$

Dividing both numerator and denominator by

$$(ms_2^2)^{\frac{n+m}{2}}$$
 and with $k = \frac{(m+n)^{\frac{m+n}{2}}}{n^{\frac{n}{2}}m^{\frac{m}{2}}}$

$$\lambda = \frac{\left(\frac{ns_1^2}{ms_2^2}\right)^n}{\left(1 + \frac{ns_1^2}{ms_2^2}\right)^{\frac{m+n}{2}}} k = F_1^{\frac{n}{2}} (1 + F_1)^{-(\frac{m+n}{2})} k$$

Where

Now $\lambda \leq \lambda_{\alpha} \Longrightarrow F_1^{\frac{n}{2}} (1+F_1)^{-(\frac{m+n}{2})} k \leq \lambda_{\alpha}$

Which implies $F_1 \le C_1$ or $F_1 \ge C_2$ where

 $C_{1}^{\frac{n}{2}}(1+C_{1})^{-(\frac{m+n}{2})}k = C_{2}^{\frac{n}{2}}(1+C_{2})^{-(\frac{m+n}{2})} = \lambda_{\alpha}$

$$\Leftrightarrow F_1 \frac{m-1}{n-1} \le C_1 \frac{m-1}{n-1}$$
 or $F_1 \frac{m-1}{n-1} \ge C_2 \frac{m-1}{n-1}$

Which implies $F \le C_1'$ or $F \ge C_2'$ where

$$F = F_1 \frac{m-1}{n-1} = \frac{(ns_1^2)/n-1}{(ms_2^2)/m-1} = \frac{\chi^2(n-1)}{\chi^2(m-1)}$$

is distributed as their F variable with (n-1) and (m-1) degrees of freedom

Now size of the test = a $\Rightarrow P \ [reject \ H_0 / H_0 \ true] = \alpha$ $\Rightarrow P \ [F \le C'_1 \ or \ F \ge C'_2 / \sigma_1 = \sigma_2 = \sigma] = \alpha$ $\Rightarrow P \ [F \le F_{1-\alpha}(n-1, m-1) + P \ [F \ge F_{\alpha}(n-1, m-1)] = \alpha$

From the table of probabilities of Snedecor's F distribution and by knowing the relation among C_1' , C_1 and λ_a (or C_2' , C_2 and λ_a) the test can be determined.

One Sided Tests: Incase we have to test the null hypothesis $H_0: \sigma_1 = \sigma_2 = \sigma$ against the alternative hypothesis $H_1: \sigma_1 > \sigma_2$ When the means are unknown, then we obtain the following test procedure: To reject H_0 if the computed value of F as defined above, exceeds the table value $F_{a}(n-1,m-1)$

Similarly in case of testing $H_0: \sigma_1 = \sigma_2 = \sigma$ against the alternative hypothesis $H_1: \sigma_1 < \sigma_2$ When the means are unknown, then we obtain the following test procedure: To reject H_o if the computed value of F is less than the table value $F_{1-\alpha}(n-1,m-1)$

In practical situation the following procedure is followed

$$s_x^2 = \frac{\sum (xi - \overline{x})^2}{n - 1}$$
, and $s_y^2 = \frac{\sum (yi - y)^2}{m - 1}$,

are firstly computed.

Then F is defined by taking the larger of s_x^2 or s_v^2 in the numerator.

In case $s_x^2 > s_y^2$, F is defined by F= s_x^2 / s_y^2 and compared with the table value $F_{a/2}(n-1,m-1)$

However if $s_x^2 < s_y^2$, F is defined by F= s_y^2 / s_x^2 and compared with the table value $F_{a/2}(m-1,n-1)$ Application 2: To test the null hypothesis $H_0: \sigma_1 = \sigma_2 = \sigma$ against the alternative hypothesis $H_1: \sigma_1 \neq \sigma_2$

where σ_1 and σ_2 are the unknown standard deviations of two Normal populations when respective means μ_1 and μ_2 are known

$$\begin{split} & \mathcal{Sup}_{\sigma_{1}=\sigma_{2}=\sigma,\mu_{1},\mu_{2}}(\frac{1}{\sigma^{2}})^{\frac{n}{2}}(\frac{1}{\sqrt{2\pi}})^{n}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(xi-\mu_{i})^{2}}(\frac{1}{\sigma^{2}})^{\frac{m}{2}}(\frac{1}{\sqrt{2\pi}})^{m}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(yi-\mu_{2})^{2}}\\ & \mathcal{Sup}_{\sigma_{1},\sigma_{2},\mu_{i},\mu_{2}}(\frac{1}{\sigma^{2}})^{\frac{n}{2}}(\frac{1}{\sqrt{2\pi}})^{n}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(xi-\mu_{i})^{2}}(\frac{1}{\sigma^{2}})^{\frac{m}{2}}(\frac{1}{\sqrt{2\pi}})^{m}e^{\frac{-1}{2\sigma^{2}}\sum_{i}(yi-\mu_{2})^{2}} \end{split}$$

Under the null hypothesis the m.l.e's are obtained as

$$\hat{\sigma}^{2} = \frac{\sum (xi - \mu_{1})^{2} + \sum (yi - \mu_{2})^{2}}{\sum (xi - \mu_{1})^{2} + \sum (yi - \mu_{2})^{2}}$$

m+n

Otherwise the m.l.e's are

$$\hat{\sigma}_{1}^{2} = \frac{\sum (xi - \mu_{1})^{2}}{n}, \text{ and } \hat{\sigma}_{2}^{2} = \frac{\sum (yi - \mu_{2})^{2}}{m},$$

By simplifying we get

$$\lambda = \left[\frac{1}{\sum(xi-\mu_1)^2 + \sum(yi-\mu_2)^2}\right]^{\frac{m+n}{2}} \left(\sum(xi-\mu_1)^2\right)^{\frac{m}{2}} \left(\sum(yi-\mu_2)^2\right)^{\frac{m}{2}} \frac{(m+n)^{\frac{m+n}{2}}}{\frac{n}{p^2}m^{\frac{m}{2}}}$$

Dividing both numerator and denominator by

$$(\sum (yi - \mu_2)^2)^{\frac{n+m}{2}}$$

and with $\frac{m+n}{2}$ $k = \frac{(m+n)^{\frac{m+n}{2}}}{\frac{n}{2}m^{\frac{m}{2}}}$

$$\lambda = \frac{\left(\frac{\sum (x_i - \mu_1)^2}{\sum (y_i - \mu_2)^2}\right)^{\frac{n}{2}}}{\left(1 + \frac{\sum (x_i - \mu_1)^2}{\sum (y_i - \mu_2)^2}\right)^{\frac{m+n}{2}}} k = F_1^{\frac{n}{2}} (1 + F_1^{-1})^{-(\frac{m+n}{2})} k$$

Where
$$F_1 = \frac{\sum (xi - \mu_1)^2}{\sum (yi - \mu_2)^2}$$

Now
$$\lambda \leq \lambda_{\alpha} \Rightarrow F_1^{\frac{n}{2}} (1+F_1)^{-(\frac{m+n}{2})} k \leq \lambda_{\alpha}$$

 $\Leftrightarrow F_1 \frac{m}{n} \leq C_1 \frac{m}{n} \quad \text{or} \quad F_1 \frac{m}{n} \geq C_2 \frac{m}{n}$

Which implies $F \le C_1'$ or $F \ge C_2'$ where

$$F = F_1 \frac{m}{n} = \frac{\sum (x_i - \mu_1)^2 / n}{\sum (y_i - \mu_2)^2 / m}$$

is distributed as F variable with (n) and (m) degrees of freedom

Now size of the test =a

 $\Rightarrow P[F \le F_{1-\alpha}(n,m) + P[F \ge F_{\alpha}(n,m)] = \alpha$

From the table of probabilities of Snedecor's F- distribution and by knowing the relation among C_1' , C_1 and λ_a (or C_2' , C_2 and λ_a), the test can be determined.

One Sided Tests: Incase we have to test the null hypothesis $H_0: \sigma_1 = \sigma_2$ against the alternative hypothesis $H_1: \sigma_1 > \sigma_2$ When the means are known then we obtain the following test procedure: To reject H_o if the computed value of F as defined above, exceeds the table value $F_{a}(n,m)$

Similarly in case of testing $H_0: \sigma_1 = \sigma_2$ against the alternative hypothesis H_1 : $\sigma_1 < \sigma_2$ when the means are known then we obtain the following test procedure: To reject H_o if the computed value of F is less than the table value **F**_{1-a} (**n**, **m**)