
Non-Parametric Inferential Statistics 

 

The entire topic is divided into 5 sub-divisions 

1. Objectives 

2. Introduction 

3. One Sample tests and their procedures 

4. Two or more sample tests and their procedures 

5. Summary 

 

1. Objectives: Dear learners, why to study Non-Parametric Inferential Statistics?  

i. To test the hypothesis when we can not make any strict assumptions about the 

form of the distribution from which we are sampling. 

ii. To know which non-parametric test is more appropriate for different situations. 

 

2. Introduction : All of we know that, parametric tests are based on some strict assumptions, 

about the form of distribution, from which the sample was drawn.  

The most common parametric assumptions are:  

i. Data are approximately normally distributed and  

ii. the key parameters(e.g., the mean or difference in means or the sd) of the distribution that are 

involved in estimation from the sample data.  

But in real world, data may not be normally distributed and thus, to analyze such data non-

parametric methods can be used as a counter part. That is,  non-parametric procedures are one 

possible solution to handle non-normal data. It uses data that is often nominal or ordinal, that is, it 

does not rely on numbers, but rather rankings.  

 

3. One sample Tests and their procedures:  

There are several one sample tests and some of them are listed below: 

i. Sign test for one sample  

ii. Wilcoxon signed rank test 

iii. Kolmogorov – Smirnov(KS) one sample test. 

 

 



i. Kolmogorov-Smirnov(KS) One-sample test: 

 

The Kolmogorov – Smirnov one sample test is a test of goodness of fit i.e., it is concerned with the 

degree of agreement between distribution of a set of sample values and some specified theoretical 

distribution.  It determines whether the scores in the sample have come from a population having the 

theoretical distribution or not. 

Procedure : Let x1, x2,…, xn be a random sample from F(x). We define empirical cumulative 

distribution function of a random variable X as  

Fn(x) = n

xXnsobservatioofnumber j 
. 

For fixed x,  Fn(x) is a statistic,  since it depends on the sample. Under H0 : F(x)= F0(x), for all x,  the 

KS one sample test for goodness of fit statistic is defined as  

Dn = Max| Fn(x) – F0(x)| 

Where F0(x) is the specified cumulative frequency distribution under H0 against the two sided 

alternative 

H1: F(x) ≠ F0(x), for some x. 

For testing H0 V/s H2 : F(x) ≥ F0(x), for all x, with strict inequality for some x, one sided KS statistic 

is  

D+
n=Max{Fn(x) – F0(x) } 

For testing H0 V/s H3 : F(x) ≤ F0(x), for all x, with strict inequality for some x, one sided KS statistic 

is  

D-
n=Max{ Fn(x) – F0(x)}  

Critical region :  

If Dn ≥ Dn, α  reject H0. Where Dn, α is a critical value which can be obtained by referring to the 

Kolmogorov – Smirnov(KS) one sample test statistic table for different values of n. 



It is expected that for every value of ‘x’, Fn(x) should be fairly close to F0(x). i.e., under H0, we 

would expect the differences between Fn(x) and F0(x) to be small and with the limits of random 

errors.   

Eg.1. (Kolmogorov-smirnov) :The following is a random sample of size 5. Test whether the sample 

can be considered as a sample from a N(0, 1) distribution:  -1.152,    -0.625,   0.682,   -0.870,    1.405. 

 

X F0(x) Fn(x) | F0(x)- Fn(x)| 

-1.152 

-0.870 

-0.625 

0.682 

1.405 

0.1247 

0.3078 

0.2341 

0.2517 

0.4199 

1/5=0.2 

2/5=0.4 

3/5=0.6 

4/5=0.8 

1 

0.0753 

0.0922 

0.3659 

0.5483 

0.5801 

 

Here, the null hypothesis H0 : F(x) = F0(x) V/s H1 : F(x) ≠ F0(x). 

Under H0 , the KS- statistic Dn is 

D5 = maximum| F0(x) - Fn(x)| = 0.5801 > 0.563 = D5, 0.05(from Table ).  

We reject H0  at 5% level of significance and conclude that   H1 : F(x) ≠ F0(x). 

 

4. Two or more sample tests and their procedures: 

There are several two ore more sample tests and some of them are listed below: 

 

i. Wilcoxon-Mann-Whitney U-test 

ii. Wald – Wolfowitz run test 

iii. The Median test 

iv. The Kruskal - Wallis – one way Analysis of Variance test   

v. Spearman’s Rank Correlation Test 

 

i. Wilcoxon-Mann-Whitney U-test. 

 

Wilcoxon-Mann-Whitney -U-test is one of the most powerful non-parametric tests. It is used as an 

alternative to a parametric two sample t-test.  



Without assuming that the two samples have come from normal population when it is ordinal 

measurement has been achieved, the Mann-Whitney - U-test may be used to test whether two 

independent groups have been drawn from the same population or not.  

Procedure:-   

Let x1, x2, . . ., xn1 be a random sample from the first population and  let y1, y2, . . ., yn2 be a random 

sample from the second population with their pdf  f(x) and f(y) respectively. 

Let z1, z2, . . . , zn1+n2  be the combined ordered sample.  Assign rank ‘1’ to the lowest score, rank ‘2’ 

to the next lowest score and so on. If there is any significance difference between two populations. [ 

i.e., if the two distribution are identical], most of the lower ranks are likely to go to values of the first 

sample and most of the higher ranks are likely to go to the values of the second sample and vice 

versa.  

Let  R1 - be the sum of the ranks of the values of the first sample and R2 - be the sum of the ranks of 

the values of the second sample .  The problem is to test null hypothesis H0 : f(x)= f(y) against the 

alternative H1 : f(x) ≠ f(y). 

Let  U1 =  R1 - 
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then we have  

U = minimum(U1,  U2).  

It is derived from that   
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For large n, under H0 the test statistic Z  is defined by  

Z =
)(
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UVar
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~ N(0, 1), asymptotically.  

Reject H0 if |Z| ≥ Z α /2  otherwise accept H0.  One may draw conclusion by referring to the standard 

normal table for the fixed level of significance α. 

 

 

 

 

 



Eg. 2.(Wilcoxon-Mann-Whitney U-test.):  

The following data refers to the percentage of recovery of dextroamphetramine extracted after seven 

hours bay a sample of children having organically related disorder and a sample of children having 

non-organic disorders. 

Organic (X)      : 17.53 20.60 17.62 20.93 27.10 

Non-organic(Y): 15.59 14.76 13.32 12.45 12.79 

Use Mann-Whitney-Wilcoxon test to test at α = 0.05 the hypothesis that the two distributions are the 

same against the alternative that μ1 > μ2. 

Solution : Here we Combine the two samples and the combined ordered Sample : 

12.45,  12.79,  13.32,  14.76,   15.59,   17.53,  17.62,    20.60,   20.93,    27.10 

Rank :     1     2     3     4     5      6           7            8           9          10 

R1= sum of ranks(X) = 6+7+8+9+10 = 40 

R2= sum of ranks(Y) = 1+2+3+4+5 = 15 

H0 : μ1 = μ2 V/s  H1 : μ1 > μ2 

U1 =  40-5(6)/2 = 25  and     U2 = 15-5(6)2= 0 

Therefore, U = min(U1, U2) = min(25, 0) = 0.   

E(U) =12.5  and       Var(U) =  22.9167 

 

We use large  sample approximation so that under H0 the test statistic Z  is defined by  

Z =
)(
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UVar
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~ N(0, 1), asymptotically.  

Z = -2.61 

 

We reject H0 since 

Z ≥ Z α /2 =1.96 at 5% level of significance and conclude that H1: μ1 > μ2.
 

ii. Wald- Wolfowitz Run Test :  

 

“A run is defined as a sequence of letters of one kind surrounded by a sequence of letters of the other 

kind and the number of elements in a run is usually referred to as the length(L) of the run”.  

 



Procedure : Consider the two ordered samples (x1, x2, . . ., xn1 ) and ( y1, y2, . . ., yn2), which are 

drawn from two populations with density f1(x) and f2(y) respectively. The problem is to test if the 

samples have been drawn from the same population or from populations with the same density 

functions i.e., if f1(x) = f2(y).  

Let us combine the two samples and arrange the observations in order of magnitude to give the 

combined ordered sample as,( say )  

                                        x1, x2,  y1, y2, y3, y4, x3, x4…..                                          (1) 

 

Thus in (1) we have in order, a run of x = 2 (i.e. L = 2), a run of y = 4,(i.e. L=4), and so on. Here the 

problem is to test the null hypothesis H0: f1(x) = f2(y). That is the samples have come from the same 

population. Let U be the number of runs in the combined ordered sample. Then the we shall find the 

distribution of U under H0. Under H0, all permutations of the n1 observations of X and n2 

observations of Y have equal probabilities. We can select the n1 positions for the n1 values in  
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Null hypothesis is rejected if U < u0, where the value of u0 for given level of significance is 

determined from considering the distribution of u under H0.  

To find P[ U = u], we must determine the number of permutations that yield u runs. First we consider 

u = 2k,  

(k > 0 is an integer) the even number of runs. In this case we have k-runs of X’s and k-runs of Y’s. n1  

X’s will give k runs if they are separated by (n1-1) dividers in distinct places between the X’s with no 

more than one divider per space. This can be done in 
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begin with runs of X’s and 
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above type may start with either X’s or Y’s and we have  

P[U = 2k]  = 
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If the number of runs in (1) is odd, i.e., u = 2k+1, it is possible to have either  

(i) k+1 runs of the ordered values of X and k runs of the ordered values of Y    or  

(ii) k runs of X’s and k+1 runs of Y’s. Hence,   

 

P[ U = 2k +1 ]   

       = P[i] + P[ii] 
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Therefore,  the distribution of U under H0 is  

P[ U = 2k ]  = 
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and    
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The null hypothesis is rejected if, the observed number of runs U is too small. That is critical region 

is of the form  



U ≤ c, where c is the constant which can be determined by using the pdf of U. If n1 and n2 are large, 

then under H0, U is distributed as asymptotic normal with   
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and we can use the normal test 

Z =
)(

)( -

UVar

UEU
~ N(0, 1) asymptotically.  

Reject H0 if |Z| ≥ Z α /2  otherwise accept H0. By referring to the standard normal N(0,1) table for the 

level of significance α one may draw conclusion. 

Normal approximation is fairly good iff n1 and n2  are large say > 10 each. The run test is sensitive to 

both differences in location and differences in spread of the two distributions.  

 

Eg.3. (Wald-Wolfowitz Run test) : Let the lengths of the male and female trident lynx spiders be 

denoted by X and Y respectively, with corresponding distributions functions F(x) and G(y). 

Measurements of the lengths in millimeters, of five male and five female spiders yielded the 

following observations as:  

 X : 5.40,  5.55,  6.00,   5.00,   5.70. 

 Y :  6.20,  6.25,  5.75,   5.85,   6.55. 

Use run test to test the null hypothesis H0 : F(x) = G(y) v/s H1 : F(x) > G(y), take α=0.10. 

Solution : Here we combine the two samples so that the combined ordered sample is 

5.00,   5.40,  5.55,  5.70,   5.75,   5.85,   6.00,   6.20,  6.25,  6.55.     

Runs of   X : L1=4, L2=1   

Runs of   Y : L1=2, L2=3. 

n1=5, n2=5,     

U = No. of runs = 4(even); and k = 2, the number of runs of X’s and Y’s 

H0 : F(x)=G(y) v/s  

H1 : F(x) > G(y) 

Under H0 : 

P[ U = 2k ]  = 0.1269. 

We use normal approximation to the above data so that 



E(U) =  6 and     Var(U) =  2.2222. 

Under H0 the test statistic Z  is given by  

Z =
)(

)( -

UVar

UEU
= - 1.3416 

Since Z < Zα=1.282,  so we can not reject H0 and conclude that H0 : F(x)=G(y). 

 

iii. The Median test : 

 

It is a statistical procedure for testing whether, two independent ordered samples differ in their central 

tendency or not. That is it gives the information of two independent samples are likely to be drawn 

from the population with the same median. 

Procedure : Let x1, x2, . . ., xn1  and y1, y2, . . ., yn2 be the two  independent ordered samples from the 

population with pdf  f(x) and f(y) respectively.  The measurement must atleast ordinal. Let z1, z2, . . ., 

zn1+n2  be the combined ordered sample. Let n1 be the number of x’s and n2 be he umber of y’s 

exceeding the median value M of the combined sample.  Then under H0 the samples come from the 

same population or from different populations with the same median. 

That is under H0: f(x) = f(y), the joint distribution of m1 and m2 is the hypergeometric distribution 

with probability function 

P(m1, m2) = 
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Most of the time it is quite inconvenient use this distribution, however for large samples we may 

regard the distribution of m1 to be asymptotically normal and one may use the ‘Z’ test. That is  

Z = 
)var(
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m

mEm
~ N(0, 1), asymptotically.     

Reject H0 if |Z| ≥ Z α /2 otherwise accept H0. One may draw conclusion  by referring to the standard 

normal table for the level of significance α. 
2χ  - ( Chi-Square ) approximation for Median test : 

In the median test the observations m1 and m2 can be classified into (2x2) contingency table and is 

given by 

 

Number  of 

observations 

Sample -1 Sample -2 Total 

> Median m1=a m2=b m1+m2= 

(a+b) 

< Median n1-m1=c n2-m2=d n1 + n2- m1 -m2=(c+d) 

Total n1=(a+c) n2=(b+d) n1+n2=N=(a+b+c+d) 

 

If the frequencies are small we can compute the exact probabilities from (1).  However, if the 

frequencies are large we may use  2χ  (Chi-square) - test with 1 degree of freedom for testing H0,  

and the test statistic is given by  
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  with 1 degree of freedom.  

However, the normal approximation is fairly good if both n1 and n2 exceed 10. 

 

 

 



iv. The Kruskal - Wallis – one way Analysis of Variance Test:-   

 

The Kruskal Wallis one-way analysis of variance by ranks is an extremely useful test whether to 

decide the ‘k’ independent samples are from different populations or not.  The Kruskal Walli’s  

technique tests, the null hypothesis H0 that the ‘k’ samples have come from the same population or 

from identical population with respect to averages. i.e.  

The test assumes that, the variable under study has an underlined continuous distribution.  It requires 

at least ordinal scale of measurement. 

In the computation of  Kruskal Walli’s test each of the ‘n’ observations are replaced by ranks i.e., all 

the scores from all of the ‘k’ samples combined  are ranked in a single series. 

The smallest score is replaced by rank 1, the next smallest by rank 2 and the largest by N where ‘N’ 

is the total no. of independent observations in the ‘k’ samples. 

The sum of the ranks in each sample is found.  It can be shown that if the ‘k’ samples actually are 

from the same population or from identical population or if H0 is true then ‘H’ statistic used in the 

Kruskal Wallis test is approximately distributed as χ2 with  

(k-1) degrees of freedom, provided the sizes of various ‘k’ samples are not too small(i.e., sample 

sizes to be at least 5).  The Kruskal - Wallis test statistic is given by 
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Where k is the number of samples, n = no. of observations in ith sample, N =∑
1

k

i
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, total no. of 

observations.   

Ri = sum of the ranks in the ith sample. 

If the observed value of H is equal to or larger than χ2 table value at the fixed level of significance for 

(k-1) degrees of freedom, then H0 will be rejected at that level of significance. 

 

v. Spearman’s Rank Correlation Test : 

 

Let (X1, Y1), (X2, Y2),…, (Xn, Yn) be a sample from a bivariate population. The sample correlation 

coefficient(R) between X’s and Y’s is defined by 



R = 
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If the sample values X1, X2, ,…, Xn  and  Y1, Y2, …., Yn  are each ranked from 1,2, …, n in increasing 

order of magnitude separately, and if the X’s and Y’s have continuous df’s we  get a unique set of 

rankings. Thus  
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where  id rank(Xi) – rank(Yi)   =  Rx - Ry 

Thus under H0, the random variables X’s and Y’s are independent, so that their ranks are also 

independent and then the statistic R is defined as 
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where R is called as the Spearman’s rank correlation coefficient between the ranks of X’s and Y’s. 

For large samples it is possible to use normal test so that under H0, the statistic  

Z = R 1n  has approximately a standard normal distribution and we should reject H0  



if |Z|> Zα  where Zα  is a critical value of Z at prefixed  α level of significance. Normal approximation 

is fairly good iff n is large, say ≥ 10. 

5. Summary :  

We have learnt several non-parametric test procedures and their applications. These tests could be 

applied when strict assumptions about the form of the distribution from which we are sampling do 

not hold, i.e. especially when data are non normal and the data are of often nominal or ordinal.  In 

other words when parametric assumptions do not hold we could use non-parametric tests as their 

alternative. 


