Frequently Asked Questions

1. Briefly explain a Likelihood ratio test procedure

Suppose a composite null hypothesis $H_0: \theta \in \Theta_0$ is to be tested against a composite alternative hypothesis $H_1: \theta \in \Theta_1$

For testing the above null hypothesis a test procedure called Likelihood ratio test procedure is followed which is explained below.

Let a random sample x1,x2,...,xn of size n be drawn from the given population with p.d.f $f(x,\theta)$

Let
$$\lambda = \frac{\sup\limits_{\theta \in \Theta_0} L(\theta, x_1, x_2, ..., x_n)}{\sup\limits_{\theta \in \Theta} L(\theta, x_1, x_2, ..., x_n)}$$

Since the supremum in the denominator is over a larger set of numbers, λ≤1. Also likelihood functions are nonnegative and hence $\lambda \ge 0$. Thus $0 \le \lambda \le 1$.

That is the test procedure is as follows:

If λ is very large that is $\lambda \ge \lambda_{\alpha}$ the null hypothesis is accepted and if λ is very small that is λ < λ_{α} the null hypothesis is to be rejected. The constant λ_{α} t is so chosen that the size of the test is α

2. In practical situation how do you test the average of a Normal population?

To test the null hypothesis H0: μ=μ0 against the alternative hypothesis H1: μ≠ μ0, when the variance is known $\left| \frac{x - \mu_0}{\sigma / \sqrt{n}} \right|$ is computed and compared with the tabulated value $Z_{\alpha/2}$

That is when the computed value of $\left| \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} \right|$ exceeds $Z_{\alpha/2}$ we reject the null hypothesis.

To test the null hypothesis H_0 : $\mu = \mu_0$ against the alternative hypothesis $H_1: \mu \neq \mu_0$ when the

variance in unknown, $\frac{|s/\sqrt{n}|}{|s|}$ is computed and if it exceeds the tabulated value of t_{α} (n-1) we reject the null hypothesis.

3. What is the test criterion to test the variance of a Normal population in practical cases?

In practice, to test the null hypothesis H0: $\sigma = \sigma 0$ against H1: $\sigma \neq \sigma 0$, when the mean is

$$\sum (xi - \mu)^2$$

known, $\frac{\sum (xi - \mu)^2}{\sigma_0^2}$ is computed and compared with the tabulated value. That is we reject

the null hypothesis if
$$\frac{\sum (xi-\mu)^2}{{\sigma_0}^2} > \chi_{\alpha/2}^2(n)$$
 or $\frac{\sum (xi-\mu)^2}{{\sigma_0}^2} < \chi_{1-\alpha/2}^2(n)$

To test the null hypothesis H0: σ = σ 0 against H1: σ ≠ σ 0, when the mean is unknown $\sum (xi - x)^2$ is computed and compared with the tabulated value. That is we reject the null σ_0^2

hypothesis if
$$\frac{\sum (xi-x)^2}{\sigma_0^2} > \chi_{\alpha/2}^2(n-1)$$
 or $\frac{\sum (xi-x)^2}{\sigma_0^2} < \chi_{1-\alpha/2}^2(n-1)$

4. For a normal population with a known variance σ^2 derive LRTP to test—the null hypothesis H0: $\mu = \mu 0$ against the alternative hypothesis H1: $\mu \neq \mu 0$

Answer:

Let $x_1, x_2...x_n$ be a random sample of size n from a Normal population with parameters μ and σ^2

$$\lambda = \frac{\sup_{\mu \in \Theta_0} L(\mu, x_1, x_2, \dots, x_n)}{\sup_{\mu \in \Omega} L(\mu, x_1, x_2, \dots, x_n)}$$

Where λ_{α} is such that

$$P[\lambda \le \lambda_{\alpha}/H_0] = \alpha - - - - - (*)$$

$$\lambda = \frac{\sup_{\mu = \mu_0} L(\mu, x_1, x_2, ..., x_n)}{\sup_{-\infty < \mu < \infty} L(\mu, x_1, x_2, ..., x_n)}$$

$$\lambda = \frac{\sup_{\mu = \mu_0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}{\sup_{-\infty < \mu < \infty} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}$$

The denominator attains the maximum value when the unknown parameter is substituted by its maximum likelihood estimate. Thus substituting μ by \overline{x} , a sample mean in the denominator we can make it to attain its maximum value. Therefore

$$\lambda = \frac{\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu_0)^2}}{\left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \bar{x})^2}}$$
$$= e^{\frac{-1}{2\sigma^2} \left[\sum_{i} (xi - \mu_0)^2 - \sum_{i} (xi - \bar{x})^2\right]}$$

$$\Rightarrow e^{\frac{-1}{2\sigma^{2}}\left[\sum_{i}xi^{2}+n\mu_{0}^{2}-2\mu_{0}\sum_{i}xi^{2}-\left(\sum_{i}xi^{2}+n\overline{x}^{2}-2\overline{x}\sum_{i}xi^{2}\right)\right]}$$

$$\Rightarrow e^{\frac{-1}{2\sigma^{2}}\left[n\mu_{0}^{2}+n\overline{x}^{2}-2n\overline{x}\mu_{0}\right]}$$

$$\Rightarrow e^{\frac{-n}{2\sigma^{2}}\left[\mu_{0}^{2}+\overline{x}^{2}-2\overline{x}\mu_{0}\right]} = \Rightarrow e^{\frac{-n}{2\sigma^{2}}\left[\overline{x}-\mu_{0}\right]^{2}}$$
Now

$$\lambda \leq \lambda_{\alpha} \Rightarrow e^{\frac{-n}{2\sigma^{2}}[\bar{x} - \mu_{0}]^{2}} \leq \lambda_{\alpha}$$

$$\Rightarrow \frac{-n}{2\sigma^{2}}[\bar{x} - \mu_{0}]^{2} \leq \ln \lambda_{\alpha}$$

$$\Rightarrow \left(\frac{\bar{x} - \mu_{0}}{\sigma / \sqrt{n}}\right)^{2} \left(\frac{-1}{2}\right) \leq \ln \lambda_{\alpha}$$

$$\Rightarrow \left(\frac{\bar{x} - \mu_{0}}{\sigma / \sqrt{n}}\right)^{2} > -2\ln \lambda_{\alpha}$$

$$\Rightarrow \left(\frac{\bar{x} - \mu_{0}}{\sigma / \sqrt{n}}\right)^{2} > \sqrt{-2\ln \lambda_{\alpha}} = \lambda_{1} \text{ (say)}$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 / H_0 true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \mu = \mu_{0}] = \alpha$$

$$\Rightarrow P\left[\frac{\bar{x} - \mu_{0}}{\sigma / \sqrt{n}} > \lambda_{1}\right] = \alpha$$

When xi follows Normal with parameters μ and σ^2 , a sample mean

$$\overline{x} \sim N(\mu, \sigma^2/n)$$
 . Then $\frac{x-\mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$ under Null hypothesis

$$\Rightarrow P[|N(0,1)| > \lambda_1] = \alpha$$

Now from the table of Normal Probabilities we can read $\lambda_1 = \frac{Z_{\alpha/2}}{2}$. Using the relation among λ_α , and $\lambda_1 = \frac{Z_{\alpha/2}}{2}$, λ_α and hence the test can be determined.

5. Deduce LRTP to test the null hypothesis H0: μ = μ 0 against the alternative hypothesis H1: μ > μ 0 when the variance is given

Answer:

Let $x_1,\; x_2...x_n$ be a random sample of size n from a Normal population with parameters $\;\mu$ and σ^2

$$\lambda = \frac{\sup_{\mu \in \Theta_0} L(\mu, x_1, x_2, \dots, x_n)}{\sup_{\mu \in \Omega} L(\mu, x_1, x_2, \dots, x_n)}$$

$$P[\lambda \leq \lambda_{\alpha}/H_0] = \alpha - - - - - (*)$$

Where $\lambda \alpha$ is such that

$$\lambda = \frac{\sup_{\mu = \mu_0} L(\mu, x_1, x_2,, x_n)}{\sup_{-\infty < \mu < \infty} L(\mu, x_1, x_2,, x_n)}$$

$$\lambda = \frac{\sup_{\mu = \mu_0} (\frac{1}{\sigma \sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (x_i - \mu)^2}}{\sup_{\mu = \mu_0} (\frac{1}{\sigma \sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (x_i - \mu)^2}}$$

$$\mathcal{A} = \frac{\lim_{\mu = \mu_0} \delta \sqrt{2\pi}}{\sup_{-\infty < \mu < \infty} \left(\frac{1}{\sigma \sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu_i)^2}}$$

If μ_0 is greater than the sample mean estimate of μ is μ_0 in the denominator then $\lambda=1$, in which case the null hypothesis should surely be accepted.

If μ_0 is less than the sample mean then the maximum likelihood estimate of μ is . Thus substituting μ by x, a sample mean in the denominator we can make it to attain its maximum value as above we get

$$\lambda = \frac{(\frac{1}{\sigma\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum\limits_{i} (xi - \mu_0)^2}}{(\frac{1}{\sigma\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum\limits_{i} (xi - \bar{x})^2}}$$

$$\lambda \leq \lambda_{\alpha} \Rightarrow$$

$$\Rightarrow \left(\frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}\right)^2 > -2 \ln \lambda_{\alpha}$$

$$\Rightarrow \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} > \sqrt{-2 \ln \lambda_{\alpha}} = \lambda_1 \text{ (say)}$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 / H_0 true] = \alpha$

$$\Rightarrow P[\lambda \leq \lambda_{\alpha} / \mu = \mu_0] = \alpha$$

$$\Rightarrow P[\frac{x-\mu_0}{\sigma/\sqrt{n}} > \lambda_1] = \alpha$$

$$\Rightarrow P[N(0,1) > \lambda_1] = \alpha$$

Now from the table of Normal Probabilities we can read $\lambda 1 = Z\alpha$. Using the relation among $\lambda\alpha$, and $\lambda 1 = Z\alpha$, $\lambda\alpha$ and hence the test can be determined. For our practical purposes to

test the null hypothesis H0: $\mu=\mu$ 0 against the alternative hypothesis H1: $\mu>\mu$ 0, $\frac{x-\mu_0}{\sigma/\sqrt{n}}$ is

computed and compared with the tabulated value z_{α} . That is we reject the null hypothesis if

$$\frac{x-\mu_0}{\sigma/\sqrt{n}}$$
 exceeds Z_{α}

6. To test the null hypothesis H0: $\mu=\mu0$ against the alternative hypothesis H1: $\mu<\mu0$, derive LRTP when variance of the population is known

Answer:

Let x_1 , x_2 ...xn be a random sample of size n from a Normal population with parameters μ and σ^2

$$\lambda = \frac{\sup_{\mu \in \Theta_0} L(\mu, x1, x2, ..., xn)}{\sup_{\mu \in \Omega} L(\mu, x1, x2, ..., xn)}$$

$$P[\lambda \le \lambda_{\alpha}/H_0] = \alpha - - - - (*)$$

Where $\lambda\alpha$ is such that

$$\lambda = \frac{\sup_{\substack{\mu = \mu_0 \\ -\infty < \mu < \infty}} L(\mu, x1, x2, \dots, xn)}{\sup_{\substack{\lambda < \infty}} L(\mu, x1, x2, \dots, xn)}$$

$$\lambda = \frac{\sup_{\mu=\mu_0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi-\mu)^2}}{\sup_{-\infty<\mu<\infty} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi-\mu)^2}}$$

$$\lambda = \frac{\sup_{\mu = \mu_0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}{\sup_{\mu \le \mu_0} \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}$$

If μ_0 is less than the sample mean, estimate of μ is μ_0 in the denominator then $\lambda=1$, in which case the null hypothesis should surely be accepted.

If μ_0 is greater than the sample mean then the maximum likelihood estimate of $\,\mu$ is $\,$, Thus

substituting μ by x, a sample mean in the denominator we can make it to attain its maximum value as above we get

$$\lambda = \frac{(\frac{1}{\sigma\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu_0)^2}}{(\frac{1}{\sigma\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \bar{x})^2}}$$

$$\lambda \leq \lambda_{\alpha} \Longrightarrow \frac{\lambda}{\sigma / \sqrt{n}} > -2 \ln \lambda_{\alpha}$$

$$\Rightarrow \frac{\mu_{0} - \overline{x}}{\sigma / \sqrt{n}} > \sqrt{-2 \ln \lambda_{\alpha}} = \lambda_{1} \text{ (say)}$$

$$\Rightarrow \frac{\overline{x - \mu_{0}}}{\sigma / \sqrt{n}} \leq -\sqrt{-2 \ln \lambda_{\alpha}} = -\lambda_{1}$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 / H_0 true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \mu = \mu_{0}] = \alpha$$

$$\Rightarrow P[\frac{x - \mu_{0}}{\sigma / \sqrt{n}} \le -\lambda_{1_{1}}] = \alpha$$

$$\Rightarrow P[N(0,1) \le -\lambda_1] = \alpha$$

Using the relation among λ_{α} , and λ_{1} = Z_{α} , λ_{α} and hence the test can be determined. For our practical purposes to test the null hypothesis H0: μ = μ 0 against the alternative hypothesis

H1: $\mu < \mu 0$, $\frac{x - \mu_0}{\sigma / \sqrt{n}}$ is computed and compared with the tabulated value $-Z_\alpha$. That is we reject

the null hypothesis if $\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}$ is less than - Z_α

7. Let $x \sim N(\mu, \sigma^2)$ Obtain LRTP to test the null hypothesis H0: $\mu = \mu 0$ against the alternative hypothesis H1: $\mu \neq \mu 0$, with an unknown variance σ^2

Let $x_1, \, x_2 ... x_n$ be a random sample of size n from a Normal population with parameters $\, \mu \,$ and σ^2

$$\lambda = \frac{Sup \quad L(x_1, x_2,, x_n)}{Sup \quad L(x_1, x_2,, x_n)}$$

$$\sigma^2, \mu$$

$$P[\lambda \le \lambda_{\alpha} / H_0] = \alpha - - - - (*)$$

Where $\lambda\alpha$ is such that

$$\lambda = \frac{Sup}{\sigma^{2}, \mu = \mu_{0}} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}} \frac{Sup}{\sigma^{2}, \mu} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}}$$

$$\sum (xi - \mu_0)^2$$

 $\frac{\sum (xi-\mu_0)^2}{n}$ Under the null hypothesis the m.l.e of σ^2 is $\frac{}{n}$ otherwise the m.l.e's of μ and σ^2

$$\sum (xi - x)^2$$

are \bar{x} and \bar{x} and \bar{x} . In the expression of \bar{x} substituting the parameters by m.l.e's so that numerator and denominator attains its supremum we have

$$\lambda = \frac{\left(\frac{1}{\sum (xi - \mu_0)^2} \sum_{i}^{\frac{n}{2}} \frac{-1}{\sum (xi - \mu_0)^2} \sum_{i}^{\frac{n}{2}} (xi - \mu_0)^2}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2\pi}{n}}} \right)^{\frac{n}{2}} \left(\frac{1}{\sum (xi - \bar{x})^2} \sum_{i}^{\frac{n}{2}} (xi - \bar{x})^2} \frac{\frac{-1}{\sum (xi - \bar{x})^2} \sum_{i}^{\frac{n}{2}} (xi - \bar{x})^2}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2\pi}{n}}} \right)^{\frac{n}{2}} = \left(\frac{\sum (xi - \bar{x})^2}{\sum (xi - \mu_0)^2}\right)^{\frac{n}{2}}$$

Consider

$$\sum (xi - \mu_0)^2 =$$

$$\sum [(xi - \bar{x}) + (\bar{x} - \mu_0)]^2 = \sum (xi - \bar{x})^2 + n(\bar{x} - \mu_0)^2 because \sum (xi - \bar{x}) = 0$$

$$\lambda = \left(\frac{\sum (xi - \bar{x})^2}{\sum (xi - \bar{x})^2 + n(\bar{x} - \mu_0)^2}\right)^{\frac{n}{2}} = \left(\frac{1}{1 + \frac{n(\bar{x} - \mu_0)^2}{\sum (xi - \bar{x})^2}}\right)^{\frac{n}{2}}$$

Now

$$\lambda \leq \lambda_{\alpha} \Rightarrow \left(\frac{1}{1 + \frac{n(\overline{x} - \mu_{0})^{2}}{\sum (xi - \overline{x})^{2}}}\right)^{\frac{n}{2}} \leq \lambda_{\alpha}$$

$$\Rightarrow \left(\frac{1}{1 + \frac{t^{2}}{n - 1}}\right)^{\frac{n}{2}} \leq \lambda_{\alpha} \Rightarrow \left(\frac{1}{1 + \frac{t^{2}}{n - 1}}\right) \leq \lambda_{\alpha}^{\frac{2}{n}}$$

$$\Rightarrow \left(\frac{\overline{x} - \mu_{0}}{s / \sqrt{n}}\right) \text{ and } s^{2} = \frac{\sum (xi - \overline{x})^{2}}{n - 1} \text{ then } \frac{t^{2}}{n - 1} = \frac{n(\overline{x} - \mu_{0})^{2}}{\sum (xi - \overline{x})^{2}}$$

$$\Rightarrow \left(1 + \frac{t^{2}}{n - 1}\right) > \lambda_{\alpha}^{\frac{-2}{n}} \Rightarrow t^{2} \geq (n - 1)(\lambda_{\alpha}^{\frac{-2}{n}} - 1)$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0/H_0true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \mu = \mu_0] = \alpha$$
$$\Rightarrow P[|t| > \lambda_1] = \alpha$$

The quantity λ_1 can be read from the table of probabilities if Students t distribution for (n-1) degrees of freedom as $\lambda_1 = t_\alpha(n-1)$. Using the relation among λ_1 and λ_α , the test can be determined.

8. To test the null hypothesis H0: $\mu=\mu0$ against the alternative hypothesis H1: $\mu>\mu0$, the variance unknown obtain LRTP. Answer: Let $x_1, x_2...x_n$ be a random sample of size n from a Normal population with parameters μ and σ^2

$$\lambda = \frac{\sup_{\substack{\sigma^2, \mu = \mu_0 \\ \text{Sup } L(x_1, x_2, \dots, x_n)}} L(x_1, x_2, \dots, x_n)}{\sup_{\substack{\sigma^2, \mu \\ P[\lambda \leq \lambda_\alpha / H_0] = \alpha - - - - - (*)}}$$

Where $\lambda\alpha$ is such that

$$\lambda = \frac{Sup}{\sigma^{2}, \mu = \mu_{0}} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}} \frac{Sup}{\sigma^{2}, \mu} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}}$$

$$\sum (xi - \mu_0)^2$$

 $\frac{\sum (xi-\mu_0)^2}{n}$ Under the null hypothesis the m.l.e of σ^2 is $\frac{}{n}$ otherwise the m.l.e's of μ and σ^2

$$\sum (xi - \overline{x})^2$$

are x and $\frac{1}{n}$. In the expression of λ substituting the parameters by m.l.e's so that numerator and denominator attains its supremum we have

$$\lambda = \frac{\left(\frac{1}{\sum (xi - \mu_0)^2}\right)^{\frac{n}{2}}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{\sum (xi - \mu_0)^2}}\sum_{i}^{(xi - \mu_0)^2} \frac{1}{\sum (xi - \mu_0)^2}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{\sum (xi - x)^2}}\sum_{i}^{(xi - x)^2} \frac{1}{\sum (xi - x)^2}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{\sum (xi - x)^2}}\sum_{i}^{(xi - x)^2} \frac{1}{\sum (xi - x)^2}}{\sum (xi - \mu_0)^2}$$

$$= \left(\frac{\sum (xi - x)^2}{\sum (xi - \mu_0)^2}\right)^{\frac{n}{2}}$$

Consider

$$\sum (xi - \mu_0)^2 =$$

$$\sum [(xi - \bar{x}) + (\bar{x} - \mu_0)]^2 = \sum (xi - \bar{x})^2 + n(\bar{x} - \mu_0)^2 because \sum (xi - \bar{x}) = 0$$

$$\lambda = \left(\frac{\sum (xi - \bar{x})^2}{\sum (xi - \bar{x})^2 + n(\bar{x} - \mu_0)^2}\right)^{\frac{n}{2}} = \left(\frac{1}{1 + \frac{n(\bar{x} - \mu_0)^2}{\sum (xi - \bar{x})^2}}\right)^{\frac{n}{2}}$$

$$\lambda \le \lambda_{\alpha} \Rightarrow \frac{\overline{x} - \mu_0}{s / \sqrt{n}} > \lambda_1$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0/H_0true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \mu = \mu_{0}] = \alpha$$

$$\Rightarrow P[\frac{x - \mu_{0}}{x / \sqrt{n}} > \lambda_{1}] = \alpha$$

$$\Rightarrow P[t > \lambda_1] = \alpha$$

Now from the table of probabilities of t distribution we can read $\lambda_1 = t_{2\alpha}$ (n-1) For our H0: $\mu=\mu0$ against the alternative hypothesis practical purposes to test the null hypothesis

H1: $\mu>\mu0$, $\frac{x-\mu_0}{s/\sqrt{n}}$ is computed and compared with the tabulated value $t_{2\alpha}(n-1)$

That is we reject the null hypothesis if $\frac{\bar{x}-\mu_0}{s/\sqrt{n}}$ exceeds $t_{2\alpha}$ (n-1)

9. Obtain a test procedure to test the null hypothesis H_0 : $\mu = \mu_0$ against the alternative hypothesis H_1 : $\mu < \mu_0$ for an unknown variance.

Answer:

Let $x_1,\,x_2...xn$ be a random sample of size n from a Normal population with parameters μ and σ^2

$$\lambda = \frac{\sup_{\sigma^2, \mu = \mu_0} L(x_1, x_2, \dots, x_n)}{\sup_{\sigma^2, \mu} L(x_1, x_2, \dots, x_n)}$$

$$P[\lambda \le \lambda_{\alpha} / H_0] = \alpha - - - - (*)$$

Where λ_{α} is such that

$$\lambda = \frac{Sup}{\sigma^{2}, \mu = \mu_{0}} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}} \frac{Sup}{\sigma^{2}, \mu} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}} \frac{1}{(xi - \mu)^{2}}$$

 $\frac{\sum (xi - \mu_0)^2}{n}$ Under the null hypothesis the m.l.e of σ^2 is $\frac{}{n}$ otherwise the m.l.e's of μ and

$$\sum (xi - \overline{x})^2$$

 $\sigma^2 \ \text{are} \ \frac{\sum (xi-x)^2}{n}.$ In the expression of λ substituting the parameters by m.l.e's so that numerator and denominator attains its supremum we have

$$\lambda = \frac{\left(\frac{1}{\sum (xi - \mu_0)^2} \sum_{i}^{n} \frac{-1}{\sum (xi - \mu_0)^2} \sum_{i}^{n} (xi - \mu_0)^2}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2^{-n}}{n}}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2^{-n}}{\sum (xi - x)^2}} \frac{-1}{\sum (xi - x)^2} \sum_{i}^{n} (xi - x)^2}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2^{-n}}{n}}}$$

$$= \left(\frac{\sum (xi - x)^2}{\sum (xi - \mu_0)^2}\right)^{\frac{n}{2}}$$

$$\sum (xi - \mu_0)^2 =$$

$$\sum [(xi - \bar{x}) + (\bar{x} - \mu_0)]^2 = \sum (xi - \bar{x})^2 + n(\bar{x} - \mu_0)^2 because \sum (xi - \bar{x}) = 0$$

$$\lambda = \left(\frac{\sum (xi - \bar{x})^2}{\sum (xi - \bar{x})^2 + n(\bar{x} - \mu_0)^2}\right)^{\frac{n}{2}} = \left(\frac{1}{1 + \frac{n(\bar{x} - \mu_0)^2}{\sum (xi - \bar{x})^2}}\right)^{\frac{n}{2}}$$
 To test the null

Now

$$\lambda \le \lambda_{\alpha} \Rightarrow \frac{\bar{x} - \mu_0}{s / \sqrt{n}} \le -\lambda_1$$

Now size of the test $=\alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \mu = \mu_{0}] = \alpha$$

$$\Rightarrow P[\frac{x - \mu_{0}}{x / \sqrt{n}} \le -\lambda_{11}] = \alpha$$

For our practical purposes to test the null hypothesis

H0: $\mu=\mu$ 0 against the alternative hypothesis H1: $\mu<\mu$ 0, $\frac{x-\mu_0}{s/\sqrt{n}}$ is computed and compared with the tabulated value $t_{2\alpha}(n-1)$

That is we reject the null hypothesis if $\frac{x-\mu_0}{s/\sqrt{n}}$ is less than - $t_{2\alpha}$ (n-1)

10. Let $x \sim N(\mu, \sigma^2)$ with a known mean μ Derive LRTP to test the null hypothesis H0: $\sigma = \sigma_0$ against H1: $\sigma \neq \sigma_0$

Answer:

Let x_1, x_2, \dots, x_n be a random sample of size n from a Normal population with parameters $\; \mu$ and σ^2

$$\lambda = \frac{\sup_{\sigma = \sigma_0} L(x1, x2,, xn)}{\sup_{\sigma \ge 0} L(x1, x2,, xn)}$$

$$P[\lambda \leq \lambda_{\alpha}/H_0] = \alpha - - - - - (*)$$

Where $\lambda\alpha$ is such that

$$\lambda = \frac{Sup_{\sigma = \sigma_{0}} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}}}{Sup_{\sigma \geq 0} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}}}$$

The denominator attains the maximum value when the unknown parameter is substituted by

its maximum likelihood estimate. Thus substituting
$$\sigma^2 = \frac{\sum (xi - \mu_0)^2}{n}$$
 in the denominator we can make it to attain its maximum value. Therefore

$$\lambda = \frac{\left(\frac{1}{\sigma_0^2}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma_0^2} \sum_i (xi - \mu)^2}}{\left(\frac{1}{\sum (xi - \mu)^2}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{\sum (xi - \mu)^2} \sum_i (xi - \mu)^2}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2}{m}}}$$

$$\Rightarrow \left(\frac{\sum (xi - \mu)^2}{\sigma_0^2}\right)^{\frac{n}{2}} n^{\frac{-n}{2}} e^{\frac{n}{2}} e^{\frac{(-1)^2}{2}} \frac{\sum (xi - \mu)^2}{\sigma_0^2}$$

$$\Rightarrow e^{\frac{-u}{2}} \frac{n}{u^2} k \text{ where } u = \frac{\sum (xi - \mu)^2}{\sigma_0^2}, k = n^{\frac{-n}{2}} e^{\frac{n}{2}}$$

$$\lambda \le \lambda_\alpha \Rightarrow e^{\frac{-u}{2}} u^{\frac{n}{2}} k \le \lambda_\alpha \Rightarrow e^{\frac{-u}{2}} u^{\frac{n}{2}} \le \frac{\lambda_\alpha}{k}$$

Now

$$\Rightarrow u \leq c_1 \text{ or } u \geq c_2 \text{ where } e^{\frac{-c_1}{2}} c_1^{\frac{n}{2}} = e^{\frac{-c_2}{2}} \quad c_2^{\frac{n}{2}} = \frac{\lambda_\alpha}{k}$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 / H_0 true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \sigma = \sigma_{0}] = \alpha$$

$$\Rightarrow P[u \le c_{1} \text{ or } u \ge c_{2} / \sigma = \sigma_{0}] = \alpha$$

$$\Rightarrow P[\chi^{2}(n) \le c_{1}] + P[\chi^{2}(n) \ge c_{2}] = \alpha$$

When xi follows Normal with parameters μ and σ^2 ,

and when
$$\sigma=\sigma_0$$
, $\frac{\sum\limits_i (xi-\mu)^2}{\sigma_0^2}\sim \chi_{\alpha/2}^2(n)$. Therefore we find the constants C_1 and C_2

such that
$$e^{\frac{-c_1}{2}}c_1^{\frac{n}{2}}=e^{\frac{-c_2}{2}}$$
 $c_2^{\frac{n}{2}}=\frac{\lambda_\alpha}{k}$

And
$$P[\chi^2(n) \le c_1] + P[\chi^2(n) \ge c_2] = \alpha$$
 where $c_1 = \chi_{1-\alpha/2}^2(n)$ and $C_2 = \chi_{\alpha/2}^2(n)$

11. Derive LRTP to test the null hypothesis H_0 : $\sigma = \sigma_0$ against H_1 : $\sigma > \sigma_0$ when the mean of a Normal population is known.

Answer:

Let $x_1, \, x_2 ... x_n$ be a random sample of size n from a Normal population with parameters μ and σ^2

$$\lambda = \frac{Sup \ L(x1, x2, ..., xn)}{Sup \ L(x1, x2, ..., xn)}$$

$$\sigma \ge 0$$

$$P[\lambda \le \lambda_{\alpha} / H_0] = \alpha - - - - (*)$$

Where $\lambda \alpha$ is such that

$$\lambda = \frac{Sup_{\sigma} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}}}{Sup_{\sigma} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}}}$$

The denominator attains the maximum value when the unknown parameter is substituted by

its maximum likelihood estimate. Thus substituting $\sigma^2 = \frac{\sum (xi - \mu_0)^2}{n}$ in the denominator we can make it to attain its maximum value. Therefore

 $\lambda = \frac{(\frac{1}{\sigma_0^2})^{\frac{n}{2}} (\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma_0^2} \sum_{i} (xi - \mu)^2}}{\left(\frac{1}{\sum (xi - \mu)^2}\right)^{\frac{n}{2}} (\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{\sum (xi - \mu)^2} \sum_{i} (xi - \mu)^2}}{(\frac{1}{\sqrt{2\pi}})^n e^{\frac{2}{n}}}$

$$\Rightarrow \left(\frac{\sum (xi-\mu)^2}{\sigma_0^2}\right)^{\frac{n}{2}} n^{\frac{-n}{2}} e^{\frac{n}{2}} e^{(\frac{-1}{2})} \frac{\sum (xi-\mu)^2}{\sigma_0^2}$$

$$\Rightarrow e^{\frac{-u}{2}} u^{\frac{n}{2}} k \text{ where } u = \frac{\sum (xi - \mu)^2}{\sigma_0^2}, k = n^{\frac{-n}{2}} e^{\frac{n}{2}}$$

$$\lambda \leq \lambda_{\alpha} \Rightarrow \frac{\sum (xi - \mu)^2}{\sigma_0^2} > C_1 = \chi_{\alpha}^2(n)$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0/H_0true] = \alpha$

$$\Rightarrow P[\lambda \leq \lambda_{\alpha} / \sigma = \sigma_0] = \alpha$$

$$\Rightarrow P\left[\frac{\sum (xi - \mu)^2}{\sigma_0^2} > \chi_{\alpha}^2(n)\right] = \alpha$$

In practice to test the null hypothesis

H₀: $\sigma=\sigma_0$ against H₁: $\sigma>\sigma_0$, the mean is known $\frac{\sum\limits_i (xi-\mu)^2}{\sigma_0^2}$ is computed and compared with

the tabulated value $\,\chi_{lpha}^{\,\,\,\,\,\,\,\,\,\,\,\,\,\,}$. That is we reject the null hypothesis if $\,\,\frac{\sum\limits_{i}(xi-\mu)^2}{\sigma_0^{\,\,\,\,\,\,\,\,\,\,\,}}$ exceeds

$$\chi_{\alpha}^{2}(n)$$

12. Derive LRTP to test the null hypothesis H_0 : $\sigma = \sigma_0$ against H_1 : $\sigma < \sigma_0$ when the mean of a Normal population is known.

Answer:

Let $x_1,\,x_2...x_n$ be a random sample of size n from a Normal population with parameters $\;\mu$ and σ^2

$$\lambda = \frac{Sup \ L(x1, x2, ..., xn)}{Sup \ L(x1, x2, ..., xn)}$$

$$\sigma \ge 0$$

Where $\lambda \alpha$ is such that

$$P[\lambda \leq \lambda_{\alpha}/H_0] = \alpha - - - - - (*)$$

$$\lambda = \frac{Sup_{\sigma = \sigma_{0}} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}}}{Sup_{\sigma \geq 0} \left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^{n} e^{\frac{-1}{2\sigma^{2}} \sum_{i} (xi - \mu)^{2}}}$$

The denominator attains the maximum value when the unknown parameter is substituted by

its maximum likelihood estimate. Thus substituting $\sigma^2 = \frac{\sum (xt - \mu_0)}{n}$ in the denominator

$$\lambda = \frac{\left(\frac{1}{\sigma_0^2}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma_0^2} \sum_{i} (xi - \mu)^2}}{\left(\frac{1}{\sum_{i} (xi - \mu)^2}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{\sum_{i} (xi - \mu)^2} \sum_{i} (xi - \mu)^2}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2}{n}}}$$

we can make it to attain its maximum value. Therefore

$$\Rightarrow \left(\frac{\sum (xi-\mu)^2}{\sigma_0^2}\right)^{\frac{n}{2}} n^{\frac{-n}{2}} e^{\frac{n}{2}} e^{\frac{(-1)^2}{2}} \sigma_0^2$$

$$\Rightarrow e^{\frac{-u}{2}} u^{\frac{n}{2}} k \text{ where } u = \frac{\sum (xi - \mu)^2}{\sigma_0^2}, k = n^{\frac{-n}{2}} e^{\frac{n}{2}} \text{How the assumptions of the model can}$$

be tested using LRTP

$$\lambda \le \lambda_{\alpha} \Rightarrow \frac{\sum (xi - \mu)^2}{\sigma_0^2} < C_2 = \chi_{1-\alpha}^2(n)$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 / H_0 true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \sigma = \sigma_{0}] = \alpha$$

$$\sum_{i} (xi - \mu)^{2}$$

$$\Rightarrow P[\frac{i}{\sigma_{0}^{2}} < \chi_{1-\alpha}^{2}(n)] = \alpha$$

In practice to test the null hypothesis

H0:
$$\sigma=\sigma_0$$
 against H1: $\sigma<\sigma_0$, the mean is known $\frac{\sum\limits_i (xi-\mu)^2}{\sigma_0^2}$ is computed and compared

with the tabulated value
$$\chi_{1-lpha}^{2}(n)$$
 . That is we reject the null hypothesis if $\frac{\sum\limits_{i}(xi-\mu)^{2}}{\sigma_{0}^{2}}$ is

less than
$$\chi_{1-\alpha}^{2}(n)$$

13. Derive LRTP to test the null hypothesis H0: $\sigma = \sigma_0$ against H1: $\sigma \neq \sigma_{0}$, with an unknown mean μ **Answer:**

Let $x_1, x_2...x_n$ be a random sample of size n from a Normal population with parameters μ and σ^2

$$\lambda = \frac{\sup\limits_{\mu,\sigma=\sigma_0} L(x1,x2,....,xn)}{\sup\limits_{\mu,\sigma\geq 0} L(x1,x2,....,xn)}$$

Where $\lambda\alpha$ is such that

$$P[\lambda \le \lambda_{\alpha}/H_0] = \alpha - - - - - (*)$$

$$\lambda = \frac{Sup}{\sum_{\substack{\mu,\sigma = \sigma_0 \\ \mu,\sigma \geq 0}} (\frac{1}{\sigma^2})^{\frac{n}{2}} (\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}{\sum_{\substack{\mu,\sigma \geq 0 \\ \mu,\sigma \geq 0}} (\frac{1}{\sigma^2})^{\frac{n}{2}} (\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}$$

Under the null hypothesis the m.l.e of $\mu = x$ otherwise the m.l.e's of μ and σ^2 are x and $\sum (xi - x)^2$

In the expression of λ substituting the parameters by m.l.e's so that numerator and denominator attains its supremum we have

denominator attains its supression of
$$\lambda$$
 substituting the parameters by attains its supression $\lambda = \frac{(\frac{1}{\sigma_0^2})^{\frac{n}{2}}(\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma_0^2}\sum_i(xi-\bar{x})^2}}{(\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma_0^2}\sum_i(xi-\bar{x})^2}} \frac{\sum_i(xi-\bar{x})^2}{\sum_i(xi-\bar{x})^2}$

$$\Rightarrow \left(\frac{\sum_i(xi-\bar{x})^2}{\sigma_0^2}\right)^{\frac{n}{2}} n^{\frac{-n}{2}} e^{\frac{n}{2}} e^{\frac{-n}{2}} e^{\frac{-n}{2}} e^{\frac{-n}{2}} e^{\frac{-n}{2}}$$

$$\Rightarrow e^{\frac{-n}{2}} n^{\frac{n}{2}} k \text{ where } n^{\frac{n}{2}} e^{\frac{-n}{2}} e^{\frac{n}{2}} e^{\frac{-n}{2}}$$

$$\lambda \leq \lambda_\alpha \Rightarrow e^{\frac{-n}{2}} n^{\frac{n}{2}} k \leq \lambda_\alpha \Rightarrow e^{\frac{-n}{2}} n^{\frac{n}{2}} \leq \frac{\lambda_\alpha}{k}$$

Now

$$\Rightarrow u \leq c_1 \text{ or } u \geq c_2 \text{ where } e^{\frac{-c_1}{2}} c_1^{\frac{n}{2}} = e^{\frac{-c_2}{2}} \quad c_2^{\frac{n}{2}} = \frac{\lambda_\alpha}{k}$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 / H_0 true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \sigma = \sigma_{0}] = \alpha$$

\Rightarrow P[u \le c_{1} \sigma ru \ge c_{2} / \sigma = \sigma_{0}] = \alpha

$$\Rightarrow P[\chi^{2}(n) \le c_{1}] + P[\chi^{2}(n) \ge c_{2}] = \alpha$$

When xi follows Normal with parameters μ and 6^2 and when $6 = \frac{\sum (xi-x)^2}{\sigma_0^2} \sim \chi_{\alpha/2}^2 (n-1)$

бо

Therefore we find the constants C_1 and C_2 such that $e^{\frac{-c_1}{2}}c_1\frac{n}{2}=e^{\frac{-c_2}{2}}$ $c_2\frac{n}{2}=\frac{\lambda_{\alpha}}{c_1}$

And $P[\chi^2(n-1) \le c_1] + P[\chi^2(n-1) \ge c_2] = \alpha$ where $c_1 = \chi_{1-\alpha/2}^2(n-1)$ and $C_2 = \chi_{\alpha/2}^2 (n-1)$

In practice to test the null hypothesis

H₀: σ = σ_0 against H₁: σ \neq σ_0 , $\frac{\sum\limits_{i}(xi-x)^2}{{\sigma_0}^2}$ is computed and compared with the tabulated value.

is we reject the null hypothesis if $\frac{\sum (xi - \overline{x})^2}{\sigma_0^2} > \chi_{\alpha/2}^2 (n-1)$ or

$$\frac{\sum_{i} (xi - \bar{x})^{2}}{\sigma_{0}^{2}} < \chi_{1 - \alpha/2}^{2} (n - 1)$$

14. Derive LRTP to test the null hypothesis H0: $\sigma = \sigma_0$ against H1: $\sigma > \sigma_0$, with an unknown mean μ Answer:

Let $x_1, x_2...x_n$ be a random sample of size n from a Normal population with parameters μ

$$\lambda = \frac{\sup_{\mu, \sigma = \sigma_0} L(x1, x2, ..., xn)}{\sup_{\mu, \sigma \ge 0} L(x1, x2, ..., xn)}$$

$$P[\lambda \leq \lambda_{\alpha}/H_0] = \alpha - - - - - (*)$$

Where $\lambda\alpha$ is such that

$$\lambda = \frac{Sup}{\mu, \sigma = \sigma_0} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}$$

$$Sup}_{\mu, \sigma \geq 0} \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}$$

Under the null hypothesis the m.l.e of $\mu = x$ otherwise the m.l.e's of μ and σ^2 are x and $\sum (xi - \bar{x})^2$

In the expression of λ substituting the parameters by m.l.e's so that numerator and denominator attains its supremum we have

denominator attains its supression of
$$\lambda$$
 substituting the parameters by denominator attains its supression $\lambda = \frac{\left(\frac{1}{\sigma_0^2}\right)^{\frac{n}{2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{2\sigma_0^2} \sum_{i} (xi - \bar{x})^2}}{\left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{-1}{\sum_{i} (xi - \bar{x})^2} \sum_{i} (xi - \bar{x})^2}} \left(\frac{1}{\sqrt{2\pi}}\right)^n e^{\frac{2}{n}}$

$$\left(\sum_{i} (xi - \bar{x})^2\right)^{\frac{n}{2}} \frac{\sum_{i} (xi - \bar{x})^2}{n}$$

$$\left(\sum_{i} (xi - \bar{x})^2\right)^{\frac{n}{2}} \frac{\sum_{i} (xi - \bar{x})^2}{n}$$

$$\Rightarrow \left(\frac{\sum (xi - \overline{x})^2}{\sigma_0^2}\right)^{\frac{n}{2}} n^{\frac{-n}{2}} e^{\frac{n}{2}} e^{\frac{(-1)^2}{2}} e^{\frac{\sum (xi - \overline{x})^2}{\sigma_0^2}}$$

$$\Rightarrow e^{\frac{-u}{2}} u^{\frac{n}{2}} k \text{ where } u = \frac{\sum (xi - \overline{x})^2}{\sigma_0^2}, k = n^{\frac{-n}{2}} e^{\frac{n}{2}}$$

$$\lambda \leq \lambda_{\alpha} \Rightarrow \frac{\sum_{i} (xi - x)^{2}}{\sigma_{0}^{2}} > C_{1} = \chi_{\alpha}^{2} (n - 1)$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 / H_0 true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \sigma = \sigma_{0}] = \alpha$$

$$\sum_{i} (xi - x)^{2}$$

$$\Rightarrow P[\frac{i}{\sigma_{0}^{2}} > \chi_{\alpha}^{2} (n - 1)] = \alpha$$

In practice to test the null hypothesis

H0: $\sigma=\sigma_0$ against H1: $\sigma>\sigma_0$, the mean is unknown $\frac{\sum\limits_i (xi-x)^2}{\sigma_0^2}$ is computed and compared

with the tabulated value $\chi_{\alpha}^{2}(n-1)$.

That is we reject the null hypothesis if $\frac{\sum\limits_i (xi-x)^2}{\sigma_0^2}$ exceeds $\chi_{\alpha}^{\ 2}$ (n-1)

15. Derive LRTP to test the null hypothesis H0: $\sigma = \sigma_0$ against H1: $\sigma < \sigma_0$, with an unknown mean μ

Answer:

Let $x_1, x_2...x_n$ be a random sample of size n from a Normal population with parameters μ and σ^2

$$\lambda = \frac{\sup_{\mu, \sigma = \sigma_0} L(x1, x2, ..., xn)}{\sup_{\mu, \sigma \ge 0} L(x1, x2, ..., xn)}$$

Where $\lambda\alpha$ is such that

$$P[\lambda \le \lambda_{\alpha} / H_0] = \alpha - - - - (*)$$

$$\lambda = \frac{Sup}{\sum_{\substack{\mu,\sigma = \sigma_0 \\ \mu,\sigma \geq 0}} (\frac{1}{\sigma^2})^{\frac{n}{2}} (\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}{\sum_{\substack{\mu,\sigma \geq 0 \\ \mu,\sigma \geq 0}} (\frac{1}{\sigma^2})^{\frac{n}{2}} (\frac{1}{\sqrt{2\pi}})^n e^{\frac{-1}{2\sigma^2} \sum_{i} (xi - \mu)^2}}$$

Under the null hypothesis the m.l.e of $\mu = x$ otherwise the m.l.e's of μ and σ^2 are x and x are x are x and x are x and x are x are x and x are x and x are x are x and x are x and x are x and x are x and x are x are x and x are x are x and x are x and x are x are x and x are x are x and x are x and x are x are x and x are x are x and x are x and x are x and x are x are x and x are x

In the expression of λ substituting the parameters by m.l.e's so that numerator and denominator attains its supremum we have

Now

$$\lambda \le \lambda_{\alpha} \Rightarrow \frac{\sum_{i} (xi - x)^{2}}{\sigma_{0}^{2}} < C_{2} = \chi_{1-\alpha}^{2} (n-1)$$

Now size of the test = $\alpha \Rightarrow P[\text{Re } jectH_0 \, / \, H_0 true] = \alpha$

$$\Rightarrow P[\lambda \le \lambda_{\alpha} / \sigma = \sigma_{0}] = \alpha$$

$$\sum_{i} (xi - x)^{2}$$

$$\Rightarrow P[\frac{i}{\sigma_{0}^{2}} < \chi_{1-\alpha}^{2} (n-1)] = \alpha$$

In practice to test the null hypothesis

H0: $\sigma=\sigma_0$ against H1: $\sigma<\sigma_0$, the mean is unknown $\frac{\sum\limits_i (xi-x)^2}{\sigma_0^2}$ is computed and compared

with the tabulated value $\chi_{1-\alpha}^{2}(n-1)$.

That is we reject the null hypothesis if $\frac{\sum (xi-x)^2}{\sigma_0^2}$ is less than $\chi_{1-\alpha}^2 (n-1)$