Frequently Asked Questions

1. What is a Best Critical Region?
Answer:
Let a simple null hypothesis Hy:0=6y be tested against the simple alternative
hypothesis H1:6=0; . Let C be a critical region for testing Hy of size a against Hy. C is
called the best critical region of size a for testing Hy against H, if C has at least the
same power as any other critical region of size a that is if C is a critical region of size
a and C’ is any other critical region of size a then Power of C greater than or equal to
Power of C’ .
In testing of hypothesis we keep a the level of significance at a fixed level ( say 0.05
or 0.01) and try to minimize the Type Il error. The sample space may be partitioned
into several ways so that each critical region, w has the same size a. Of all these
critical regions choose that which has least type Il error. This is called the best
critical region of size a.

2. What do you mean by MP test?
Answer:
Among the critical regions of the same size a that which renders the minimum Type
Il error is called the most powerful critical region. The test based on the most
powerful critical region is called the most powerful test. Therefore among all tests
possessing the same size of Type | error, choose one for which the size of the Type
Il error is small as possible. This test is called the Most Powerful test.

3. State the Neyman- Pearson Lemma for finding out the best test.
Answer:
Let the probability density function of the population be f(x, 6) where 8 represents the
parameters. Draw a sample (x1, x2...xn) from this population. Let L be the likelihood
function then L=f(x1, x2... xn).
Let L1 stands for the likelihood function when H1 is true and LO stands for the
likelihood function when HO is true ( HO and H1 are simple hypothesis)
Let a be the level of significance. Let k be any constant such that the size of the
critical region defined as below is a

Li(x; 0)
C=1(x1,x2,.....xn): ————>k
Ly(x; 0)

4. Briefly explain the Procedure to obtain a Best Critical Region.

Answer:

¢ Obtain likelihood functions under null hypothesis and alternative hypothesis and call
them as L0 and L1

¢ Obtain the ratio L1/L0

¢ Obtain the critical region as a region satisfying the condition L1 / LO > k, where k is
determined such that Probability of x belongs to the above mentioned Critical
region under null hypothesis is equal to the size of the test

5. Find the BCR of size a for testing HO: p=p0 against H1: y=p1(>u0 )when a sample of
size n is drawn from the Normal population with an known variance o



Answer:

Let x1, x2...xn be a random sample of size n from a Normal population with
parameters p and o®

By NP Lemma a size a BCR is given is given by

C= {(xl, I e Ly k}
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Now from the table of Normal Probabilities A> can be read . Using the relation among
A1, A2and k, k can be determined. Hence the BCR can be found
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. Find the BCR of size a for testing HO: y=p0 against H1: y=p1(<p0 )when a sample of
size n is drawn from the Normal population with an known variance o

Answer:

Let x1, x2... xn be a random sample of size n from a Normal population with
parameters p and o®

By NP Lemma a size a BCR is given is given by
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By substituting equation (2) in equation (*) we get
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. Find the BCR of size a for testing HO: 0=0¢ against H1: 0=0¢ (>00 )when a sample of
size n is drawn from the Normal population with a known mean p

Answer:
Let x1, x2...xn be a random sample of size n from a Normal population with

parameters p and o?
By NP Lemma a size a BCR is given is given by
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. Find the BCR of size a for testing H0O: 0=0¢ against H1: 0=0¢ (<0¢ )when a sample of
size n is drawn from the Normal population with a known mean p

Answer:

Let x1,x2,...,xn be a random sample of size n from a Normal population with
parameters p and o®

By NP Lemma a size a BCR is given is given by
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Now from the table of Chi square Probabilities A2 can be read . Using the relation

among A1, Az and k, k can be determined. Hence the BCR can be found
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. Obtain a BCR of size a for testing HO: A=AO against H1: A=A1(<AO )when a sample of
size n is drawn from the Poisson population with unknown parameter A?

Answer:

Let x1,x2,....xn be a random sample of size n from Poisson population with
parameter A

By NP Lemma a size a BCR is given is given by
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The BCR when Ay < A is givenby C = {(xl,x2,...,xn) : le- < kz}

10.1f x1,x2,...,xn is a random sample of size n from a distribution having probability
density function of the form f(x, 8) = 6x ®". Obtain a BCR for testing H0:6=1 against
H1:6=2
Answer:
Let x1,x2,...,xn be a random sample of size n from population with probability density
function of the form f(x, 8) = 6x ®"

Required to test HO:6=1 against H1:0=2

By NP Lemma a size a BCR is given is given by
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11.Find BCR of size a for testing HO:p=p0 against H1: p=p1(>p0) when a sample of size
m is drawn from a Binomial population with parameters n and p ( n is known)

Answer:
Let x1,x2,...,xm be a random sample of size n from Binomial population with with

parameters n and p
By NP Lemma a size a BCR is given is given by
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12.Find the BCR of size a for testing HO: A=A0 against H1: A=A1(>A0 )when a sample of

size n is drawn from the Poisson population with unknown parameter A?
Answer:

Let x1,x2,....xn be a random sample of size n from Poisson population with
parameter A

By NP Lemma a size a BCR is given is given by
A
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The BCR when Ay > A is givenby C = {(xl,x2,...,xn) DY x> kz}
i

13.Find BCR of size a for testing HO:p=p0 against H1: p=p1(<p0) when a sample of size

m is drawn from a Binomial population with parameters n and p ( n is known)
Answer:

Let x1,x2,....xm be a random sample of size n from Binomial population with
parameters n and p

By NP Lemma a size a BCR is given is given by
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14.1f x1,x2,...,xn is a random sample of size n from an exponentlal distribution having

probability density function of the form f(x, 8) = 8e %, x>0. Derive BCR for testing
Ho:6=0, against H1:6=0+(>80). Obtain the null dlstrlbutlon of the test statistic



Answer:

Let x1,x2,...,xn be a random sample of size n from population with probability density
function of the form f(x, 8) = 6e %, x>0.

Required to test H0:6=00 against H1:0=01.

By NP Lemma a size a BCR is given is given by
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Now from the table of Chi square Probabilities A2 can be read . Using the relation
among A1, Az and k, k can be determined. Hence the BCR can be found



The BCR when 8> 8q is given by C = {(xl, xX2,...,xn): > xi < 22)}
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The null distribution of the test statistic is the distribution of > xi when 6=6, is

l
nothing but the probability density function of Gamma distribution with parameters n
6," _ _
and 8, and is given by f(y)=——e¢ 90yy" ly>0,
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15.1f x1,x2,...,xn is a random sample of size n from an exponential distribution having
probability density function of the form f(x, 8) = 8e ®, x>0. Derive BCR for testing
Ho:6=0, against H1:6=01(<8y). Obtain the null distribution of the test statistic
Answer:
Let x1, x2... xn be a random sample of size n from population with probability density
function of the form f(x, 8) = 8e %, x>0.
Required to test HO: 8=60 against H1: 6=01.
By NP Lemma a size a BCR is given is given by
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Now size of the test =a implies Ly (xi,6)
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Hence the BCR can be found

The BCR when 8, < 6, is given by C = {(xl,x2,...,xn) 2 xi > 22)}



