
1. Introduction
Welcome to the series of e-learning modules on Standard Error and Estimation of Standard 
Errors. In this module we are going cover the basic concept of standard error and the results 
related to the estimation of standard errors of mean, total and proportions. 

By the end of this session, you will be able to explain:  
• Standard Errors
• Variance of sample mean and total under Simple Random Sampling With 

Replacement and Standard Errors
• Variance of sample mean and total under Simple Random Sampling 

Without Replacement and Standard Errors
• Standard Errors for proportions

In most statistical problems, there is no estimator that is guaranteed to give the right answer 
because the value of the estimator typically depends on the sample.The standard 
error measures the long-run average spread of estimated values in the same hypothetical 
scenario.

Both bias and standard errors contribute to the average size of the error of an estimator. If the 
bias is large, on an average the estimator overshoots or undershoots  the truth by a large 
amount. If the standard error is large, the estimator typically is far from truth, even if its 
average is close to truth.

The formulae for the standard errors of the estimated population mean and total are used 
primarily for three purposes:
One, to compare the precision obtained by Simple Random Sampling With that given by other 
methods of sampling. 
Two, to estimate the size of the sample needed in a survey that is being planned, and
Three, to estimate the precision actually attained in a survey that has been completed.

Standard error can be defined as the standard deviation of a given distribution.
For example: Suppose ‘t’ is an estimator, then, standard error of ‘t’ equals to square root of 
variance of t.



2. Theorems on Simple Random 
Sampling With Replacement
We shall now look at some theorems on Simple Random Sampling With Replacement.
Here, theorem 1 state that, under Simple Random Sampling With Replacement, variance of 
sample mean is given by sigma square by n. 

Proof: 
Let y one, y two, etc yn be a Simple Random Sampling With Replacement sample of size ‘n’ 
drawn from a population of size N. We know that population mean Y bar equals to 
summation Yi by N

And sample mean y bar is equal to summation yi by n
Also we have population variance sigma square is equal to summation Yi minus Y bar whole 
square divided by N,
which is equal to summation Yi square by N minus Y bar square and the expected value of y 
bar is equal to population mean Y bar. 

Now, consider:
Variance of sample mean y bar is equal to variance of summation yi by n which is equal to 
variance of summation yi by n square
Is equal to one by n square into summation of variance of yi plus summation i not equal to j 
covariance of yi yj.    
Here, covariance of yi, yj is equal to zero, since the y1 units selected at ith draw is 
independent of yj units selected at the jth draw.

Therefore, variance of y bar is equal to one by n square into summation variance yi. Call this 
equation as one.
Variance of yi is equal to expected value of yi square minus Expected value of yi whole 
square.
But, the expected value of yi square is equal to summation Yi square by N which is equal to 
summation Yi square by N.
Expected value of yi equals to summation Yi by N equal to the population mean Y bar.
Therefore, variance of yi is equal to summation Yi square by N minus Y bar square which is 
equal to sigma square.

By substituting the values in equation 1, we get, Variance of y bar is equal to one by n 
square summation variance of yi,

Which is equal to one by n square summation sigma square 
Equal to n sigma square by n square, this is equal to sigma square by n.    

Theorem 2:  Under Simple Random Sampling With Replacement, sample mean square is an 
unbiased estimator of sigma square, that is, to show that expected value of s square is equal 
to sigma square.

Proof: We know  that:



Sigma square is equal to summation Yi minus Y bar whole square divided by N which is equal 
to summation Yi square by N minus Y bar square.
Which implies summation Yi square by N is equal to sigma square plus Y bar square. Call this 
as star.
S square is equal to summation yi minus y bar whole square by n minus 1 
Is equal to one by n minus 1 into summation yi square minus n into y bar square. 
Consider expected value of s square. Equal to expected value of summation yi minus y bar 
whole square by n-1 
Which is equal to expected value of summation yi square minus n ybar square divided by n 
minus one 
Which is equal to summation expected value of yi square minus n expected value of ybar 
square divided by n minus one . Call this as 1. 
Expected value of yi square is equal to summation Y i square by N which is equal to sigma 
square plus Y bar square. Call this as 2. 

Expected value of y bar square is equal to variance of y bar plus expected value of y bar 
whole square which is equal to sigma square by n plus Y bar square. Call this as 3. 

Substituting equations 2 and 3 in equation 1, we get, 
Expected value of s square is equal to summation of sigma square plus Y bar square minus  
n into sigma square by n plus Y bar square, divided by n minus one
Which is equal to  n into sigma square plus Y bar square minus  n into sigma square by n plus 
Y bar square divided by n minus one
which is equal to n minus one into sigma square by n minus one, which is equal to sigma 
square. 

Next, Theorem 3 states that, the variance of population total under Simple Random Sampling 
with Replacement is given by N square sigma square by n. That is, variance of Y cap is equal 
to N square sigma square by n. 

Theorem 4 states that:
An unbiased estimator of variance of estimated population total is given by N square s square 
by n .That is, the estimate of variance of Y cap is equal to N square into s square by n. 

Standard Errors of mean and total under Simple Random Sampling With Replacement
Standard Error can be defined as the Standard Deviation of the distribution i.e. square root of 
the variance of the distribution 

a)  The standard error  of sample mean is equal to square root of variance of y bar 
which is equal to square root of sigma square by n
b)  An estimate of standard error of sample mean is equal to estimate of the square 
root of variance of the sample mean which is equal to square root of s square by n

c)  A standard error of the estimated population total is equal to square root of variance of 
estimated population total, which is equal to square root of N square into sigma square by n.
d)  An estimate of  standard error of estimated population total is equal to estimate of square 
root of variance of estimated population total, which is equal to  square root of N square into s 
square by n.



3. Theorems on Simple Random 
Sampling Without Replacement 
(Part 1)  
Theorem 5: Under Simple Random Sampling Without Replacement variance of the unbiased 
estimator of population mean is given by variance of y bar is equal to N minus n into sigma 
square divided by n into N minus one or variance of y bar is equal to N minus n into S square 
divided by n into N. 

Proof:  

We have the population variance sigma square is equal to summation Yi minus Y bar whole 

square  divided by N which is equal to summation Yi square by N minus Y bar square and 

S square is equal to summation Yi minus Y bar whole square divided by N minus one.

Which implies N minus one into  S square is equal to N into sigma square

Which implies sigma square is equal to N minus one into S square divided by N.
Consider variance of ybar is equal to variance of summation yi by n which is equal to variance 
of summation yi by n square.

This is equal to one by n square into summation of variance of yi plus summation i not equal 
to j covariance of yi yj. Call this as (1)
Variance of yi is equal to expected value of yi square minus expected value of yi whole 
square
But, expected value of yi square is equal to summation Yi square by N. 

Therefore, the variance of yi is equal to summation Yi square by N minus Y bar square which 
is equal to sigma square. Call this as 2.
Covariance of yi yj is equal to expected value of yi yj minus expected value of yi into expected 
value of yj
Expected value of yi is equal to summation Yi  by N which is equal to population mean Y bar 
and  similarly expected value of yj is equal to  Y bar

Since yi and yj takes values Yi and Yj with probability one by N each
Covariance of yi yj is equal to expected value of yi yj minus Y bar square. Call this as 3.

Expected value of yi yj is equal to summation YiYj into probability of yiyj, which is equal to 

summation YiYj by N into N minus one. Call this as four.
We know that  summation Yi minus Ybar  is equal to zero



Which implies summation Yi minus Ybar whole square is equal to zero
Which implies summation Yi whole square plus N square Ybar  square 2 N Y bar into 
summation Yi is equal to zero.

Which implies summation Yi whole square plus N square  Ybar  square 2 N Y bar into N into Y 
bar is equal to zero
Which implies summation Yi whole square plus N square  Ybar  square two N square Y bar 
square  is equal to zero
Summation Yi square plus Double summation YiYj minus N square Y bar square is equal to 
zero
Which implies double summation YiYj is equal to  N square Y bar square minus  summation yi 
square
Which  is equal to  N square Y bar square minus   N into sigma square  plus N into  Y bar 
square, which  is equal to  N square Y bar square minus   N into sigma square plus Y bar 
square. Call this as five.

By substituting equation 5 in equation 4 we get
Expected value of yi yj is equal to summation YiYj by N into N minus one
Which is equal to N square Ybar square minus N into sigma square plus Ybar square by N 
into N minus one,
which is equal to N square Ybar square minus sigma square minus Ybar square by N minus 
one. Call this as six.
By substituting equation 6 in equation 3 we get,
Covariance of yi yj is  equal to N square Ybar square minus  sigma square minus Ybar square 
by N minus one minus Y bar square,

which is equal to minus sigma square by N minus one, and let us call this equation 7.    

By substituting equations 2 and 7 in equation 1

Variance of y bar is equal to summation sigma square plus summation minus sigma square 

by N minus one  whole term divided by  n square

Which  is equal to n sigma square minus  n into n minus one  sigma square by N minus one  

whole term divided by  n square

Which is equal to sigma square minus  n minus one  sigma square by N minus one  whole 

term divided by  n 

Which is equal to sigma square into N minus n by N minus one into n. Call this as star.
We know that, 
Sigma square is equal to N minus one into S square by N
Hence, variance of y bar is equal to N minus one into S square into N minus n divided by N 
into n into N minus one
Which is equal to N minus n into s square by N into n.



4. Theorems on Simple Random 
Sampling Without Replacement 
(Part 2)
Theorem 6: 
A sample mean square s2 is an unbiased estimator of population mean square S2 under 
Simple Random Sampling Without Replacement.
That is expected value of s square is S square.

Proof:
s square is equal to summation yi minus y bar whole square divided by n minus one  and
S square is equal to summation Yi minus Y bar whole square divided by N minus one 
Consider Expected value of s square is equal to expected value of  summation  yi minus ybar 
whole square divided by n minus one
Which is equal to  one by n minus one into expected value of  summation  yi square  minus  n 
into ybar  square 
Which is equal to one by n minus one into summation expected value of    yi square minus n 
into expected value of ybar square. 
Call this equation as one.
 
But Expected value of yi square is equal to summation Yi square by N. 
Which is equal to sigma square plus population mean Y bar square. Call this as two.
Expected value of ybar square is equal to variance of y bar plus expected value of y bar 
whole square which is equal to 

N minus n into sigma square by N minus one into n, plus Y bar square. Call this as three.
Substituting equations 2 and 3 in equation 1, we get:
Expected value of s square is equal to
Summation sigma square plus Y bar square minus n into N minus n by N minus one into 
sigma square by n plus Y bar square by n minus one
Which is equal to n into sigma square plus Y bar square minus N minus n by N minus one into 
sigma square minus n into Y bar square by n minus one.

Which is equal to n into  sigma square plus  n into Y bar square minus  N minus n by N minus 
one into sigma square minus n into Y bar square by n minus one
Which is equal to sigma square by n minus one  whole multiplied by n minus N minus n by N 
minus one
is equal to sigma square by n minus one  whole multiplied by n into N minus one minus N 
plus n whole divided by N minus one
equals to sigma square by n minus one whole multiplied by N into n minus  one whole divided 
by N minus one
equals to N into sigma square by N minus one  
which is equal to S square.



Theorem 7:  An estimate of the variance of the sample mean under Simple Random Sampling 
Without Replacement is given by:
Estimate of variance of y bar is equal to N minus n into s square divided by N into n.

    Theorem 8:  The variance of estimated population total under Simple Random Sampling 
Without Replacement is given by N minus n into N square sigma square by n into N minus 
one
Which is equal to N minus n into N square S square by N into n.

Theorem 9:  An unbiased estimator of variance of estimated population total is given by: Cap 
of variance of Y cap is equal to N square into N minus n into s square by N into n.

Sampling for Attributes.
We know that, S square is equal to N into P into Q divided by N minus one.
Similarly s square is equal to n into p into q divided by n minus one.



5. Theorems on Simple Random 
Sampling Without Replacement 
(Part 3) 
Theorem 10:
Under Simple Random Sampling Without Replacement variance of sample proportion p is 
equal to N minus n by N minus one into PQ by n.

Proof:     
Already we proved in the last topic that p is equal to sample mean y bar. 
Variance of p is equal to variance of y bar which is equal to N minus n into S square divided 
by N into n 
Which is equal to N minus n multiplied by N into P into Q by N into n multiplied by N minus 
one 
Which is equal to N minus n into P into Q by N minus one into n.

Theorem 11:
Estimate of Variance of p is equal to N minus n by n minus one into pq by N.

By making use of already proven result that E of s square equals to S square  we get,
Expectation of N minus n into s square by N into n
Is equal to N minus n by N into n multiplied by s square which is equal to variance of p.
Hence, N minus n by p into p into q by n minus 1 gives an unbiased estimate of variance of p 
as desired.

Standard Errors of  the Distribution: Mean , Total and Proportion 
a) The  Standard Error of sample mean

is equal  square root of variance of y bar is equal to  square root of N minus n into sigma 
square divided by n into N minus one
Which is equal to square root of   N minus n into S square divided by n into N.

b) An estimate of Standard Error of sample mean
is equal  to estimate of square root of variance of y bar is equal to  square root of N minus n 
into s square divided by N minus 1 into n. 

c) An estimate of Standard Error of estimated population total
is equal to estimate of  square root of variance of  Y cap  is equal to  estimate of square root 
of N square into variance of y bar is equal to square root of N square into N minus n into s 
square divided by N into n .  

d) The Standard Error of the  sample  proportion

Standard error of p is equal to square root of  variance of p is equal to  square root of N minus 

n by N minus one into PQ by n.



An estimate of Standard Error of sample proportion Estimate of standard error of p is equal to 

square root of N minus n into pq by N into n minus one.

Here’s a summary of our learning in this session:

• Standard error

• Results related to the estimation of standard errors of mean and total under 
Simple Random Sampling With Replacement and Simple Random Sampling 
Without Replacement 

• Standard error of proportions


