Frequently Asked Questions

1. What do you mean by Standard Error?
Answer:

The STANDARD ERROR measures the long-run average spread of the
estimated values in the same hypothetical scenario.

Both bias and standard error contribute to the average size of the error of
an estimator. If the bias is large, on an average the estimator overshoots or
undershoots the truth by a large amount. If the Standard Error is large, the
estimator typically is far from the truth, even if its average is close to the
truth. Standard error can be defined as the standard deviation of the
distribution.

For example, suppose t is an estimator then Standard Error of t equals to
square root of variance of t.

2. What are the purposes of obtaining standard errors?

Answer:

The formulae for the standard errors of the estimated population mean and
total are used primarily for three purposes:

1) To compare the precision obtained by Simple Random Sampling with
that given by other methods of sampling

2) To estimate the size of the sample needed in a survey that is being
planned

3) To estimate the precision actually attained in a survey that has been
completed.



3. Under SRSWR variance of sample mean is given by sigma square by n.

ie, V(y)= 6%

Answer:

Let y1,y2,..., yn be SRSWR sample of size n drawn from a population of size
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By substituting the above in equation 1, we get
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4. Under SRSWR, sample mean square is an unbiased estimator of &* i.e.
to show that E(s*) = c?

Answer:

Let y1,y2,..., yn be SRSWR sample of size n drawn from a population of
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Therefore sample mean square is an unbiased estimator of population

variance.

5. The variance of population total under SRSWR is given by NzU% i.e. to

prove that ¥(y)= N’ :

Answer:

Let y1,y2,..., yn be SRSWR sample of size n drawn from a population of size

N.
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6. An unbiased estimator of variance of estimated population total is given
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by 4 i.e. to prove that v(v) = 4
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7.Under SRSWOR variance of the unbiased estimator of population mean is
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By substituting eqn 6 in eqn 3 we get
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8. A sample mean square s2 is an unbiased estimator of population mean
square SZ2 under SRSWOR i.e,, £(s*) =S’

Answer:

Let y1,y2,..., yn be SRSWOR sample of size n drawn from a population of size
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Therefore sample mean square is an unbiased estimator of population
variance.
9. An estimate of the variance of the sample mean under SRSWOR is given
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Answer:

Let y1, y2... yn be SRSWOR sample of size n drawn from a population of size
N.
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10. The variance of estimated population total under SRSWOR is given by
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Answer:

Let y1, y2... yn be SRSWOR sample of size n drawn from a population of size
N.
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11. An unbiased estimator of variance of estimated population total is given
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We know that V(Y) = N2V (3)
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12. Under SRSWOR Obtain an expression for the variance of the sample
proportion p

Answer:

Already we proved in the last topic that p= §
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13. Derive a expression for the estimate of variance of the sample
proportion.
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14. How do you estimate the standard errors of the mean and total under
SRSWR and get the estimates of the standard errors

Answer:

S.E. can be defined as the S.D. of the distribution i.e. square root of the
variance of the distribution

a) The S.E (y)
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b) An estimate of S.E. of sample mean
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15. How do you estimate the standard errors of the mean, total and
proportion under SRSWOR and get the estimates of the standard errors
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a) The S.E. of sample mean
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