
1. Introduction 
Welcome to the series of E-learning modules on Method of Moments. In this module we are 
going to cover the basic principle of method of moments- Advantages, disadvantages and 
properties of moment estimators, estimation of certain population parameters by the method 
of moments. 

By the end of this session, you will be able to understand and explain:

• The basic principle of method of moments

• Properties of moment estimators

• Advantages and disadvantages  of the method

• The procedure to estimate certain parameters of the population by the method of 
moments

Introduction :
Any  statistical  investigation  aims  at  making  generalizations  from  sample  to  population. 
Moreover selecting a random sample is essential for drawing valid conclusions about the 
population Methods of estimation develops theoretical basis of connection between sample 
information and population model. This in turn permits inference about the population 

In statistics, the method of moments is a method of estimation of population parameters such 
as mean, variance, median, etc. (which need not be moments), by equating sample moments 
with unobservable population moments and then solving those equations for the quantities to 
be estimated.

The method of moments is the oldest method of deriving point estimators. It almost always 
produces  some  asymptotically  unbiased  estimators,  although  they  may  not  be  the  best 
estimators.

The method of moments consists in equating the first few moments of the population with the 
corresponding moments of the sample. 

The method of moments in mathematical statistics is one of the general methods for finding 
statistical  estimators  of  unknown  parameters  of  a  probability  distribution  from  results  of 
observations. The method of moments was first used to this end by Karl Pearson in eighteen 
ninety four to solve the problem of the approximation of an empirical distribution by a system 
of Pearson distributions 

Since parameters  enter  into  the population moments these relations when solved for  the 
parameters give estimates by the method of moments. Of course the method is applicable 
only when the population moments exist. The method is generally applied for fitting theoretical 
distributions to the observed data.



2.  Procedure  of  the  Method  of 
Moments 
The procedure in the method of moments is this: The moments of the empirical distribution 
are determined (the sample moments), equal in number to the number of parameters to be 
estimated; they are then equated to the corresponding moments of the probability distribution, 
which are functions of the unknown parameters; the system of equations thus obtained is 
solved for the parameters and the solutions are the required estimates. 

In  practice  the  method  of  moments  often  leads  to  very  simple  calculations.  Under  fairly 
general  conditions  the  method  of  moments  allows  one  to  find  estimators  that  are 
asymptotically normal, have mathematical expectation that differs from the true value of the 
parameter only by a quantity of order 1/n and standard deviation that deviates by a quantity of 
order 1/√n 

However, the estimators found by the method of moments need not be best possible from the 
point of view of efficiency: their variance need not be minimal. For a normal distribution the 
method of moments leads to estimators that coincide with the estimators of the maximum-
likelihood method, that is, with asymptotically-unbiased asymptotically-efficient estimators. 

Scientifically the method of moments is carried out as follows:
Let f of (x, theta one, theta two,   etc theta k) is the density function of the population under 
consideration. To estimate the unknown parameters theta one , theta two,   etc  theta k  if  mu 
r dash  denotes the rth  moment ( about zero) then by definition
Mu r dash is equal to integral of x to the power r into f of ( x, theta one , theta two,   etc  theta 
k) dx where r is equal to one, two,.. etc

That is, mu 1 dash is equal to integral of x into f of ( x, theta one , theta two,   etc  theta k ) dx 
mu 2 dash is equal to integral of x to the power 2 into f of ( x, theta one , theta two,   etc  theta 
k) dx etc. Mu k dash is equal to integral of x to the power k into f of (x, theta one, theta two, 
etc  theta  k)  dx.  Mu  1  dash,  mu  2  dash,  etc  mu  k  dash  is  in  general  functions  of  the 
parameters theta 1, theta 2, till theta k. Thus the above is a set of k equations involving k 
unknown parameters theta 1, theta 2, etc till theta k.

 Now solving the equations theta 1, theta 2, etc theta k, can be written as the functions of Mu 
1 dash, mu 2 dash, etc till mu k dash. But in general Mu 1 dash, mu 2 dash, etc mu k dash 
are unknown and hence their estimators by sample moments m 1 dash, m 2 dash, etc m k 
dash  respectively where m r dash is equal to summation xi to the power r by n,  x one , x two, 
till  xn being sample observations are determined. 

In case of frequency distribution of the sample observations rth sample moment m r dash is given 
by m r dash is equal to summation f  i  into x i  to the power r by N. Thus the method of 
moments consists in equating rth raw moments about the origin in the population to the rth raw 
moments about the origin in the sample by giving values r is equal to one, two, etc. And 
obtaining various equations containing parameters and solving these equations to obtain the 



estimate of the parameters.

Let x one, x two, etc, till xn be a random sample of size n from a population with probability 
density function(x, theta). Then xi (i equal to 1, 2 etc., till n) are i. i. d.  Hence if  Expected 
value of xi to the power r exists   , then by Weak Law of Large Numbers  we get
1 by n summation xi to the power r tends in probability to Expected value  of xi to the power r 
which implies m r dash tends in  probability to mu  r dash
Hence sample moments are consistent estimators of the corresponding population moments.

Method  of  Moments  (MOM) is  a  numerical  technique  used  to  approximately  solve  linear 
operator equations such as differential equations, or integral equations. The unknown function 
is approximated by a finite series of  known expansion functions with unknown expansion 
coefficients. 

The approximate function is substituted in the original operator equation and the resulting 
approximate equation is tested so that the residual is minimized in some sense. This results 
into  a  number  of  simultaneous  algebraic  equations  for  the  unknown  coefficients.  These 
equations are then solved using matrix calculus.



3.  Properties,  Advantages  and 
Disadvantages  of  Moment 
Estimators 
Properties of Moment Estimators:

• Moment estimators are consistent provided the population moments exists

• Moment estimators need not be unbiased

• Under certain conditions moment estimators have an asymptotic Normal distribution

• Moment estimators are less efficient than maximum likelihood estimators

Advantages and disadvantages of this method:
In some respects, when estimating parameters of a known family of probability distributions, 

this  method  was  superseded  by  Fisher's  method  of  maximum  likelihood,  because 
maximum likelihood estimators have higher probability of being close to the quantities to 
be estimated. 

However,  in  some  cases,  as  in  the  example  of  the  gamma  distribution,  the  likelihood 
equations may be intractable without computers, whereas the method-of-moments estimators 
can be quickly and easily calculated by hand. 

Estimates by the method of moments may be used as the first approximation to the solutions 
of the likelihood equations, and successive improved approximations may then be found by 
the  Newton–Raphson  method.  In  this  way  the  method  of  moments  and  the  method  of 
maximum likelihood are symbiotic.

In some cases, infrequent with large samples but not so infrequent with small samples, the 
estimates given by the method of moments are outside of the parameter space; it does not 
make sense to rely on them then. That problem never arises in the method of  maximum 
likelihood. Also, estimates by the method of moments are not necessarily sufficient statistics, 
i.e., they sometimes fail to take into account all relevant information in the sample. 

When estimating other structural parameters (e.g., parameters of a utility function, instead 
of parameters of a known probability distribution), appropriate probability distributions may 
not  be known, and moment-based estimates may be preferred to Maximum Likelihood 
Estimation. Method of Moments has been used to solve vast number of electromagnetic 
problems during the last five decades. 

The Method of Moments technique, as applied to problems in electromagnetic theory, was 
introduced  by  Roger  F.Harrington  in  his  nineteen  sixty  seven  seminar  paper,  “Matrix 
Methods for Field Problems”. The implementation of the Method of Moments, by Poggio 
and  Burke  at  Lawrence  Livermore  National  Labs  during  the  nineteen  seventy’s, 
established this solution technique as a mainstay in the design of  wire and wire array 
antennas. 



4. Illustrative Examples 
Illustrative examples 
Estimate the parameter p in sampling from a Binomial population with parameter n known by 
the method of moments
Solution:
Since only one parameter is unknown we need to find mu one dash only. But for a Binomial 
variable with parameters n and p Mu one dash is equal to Expected value of X which is equal 
to n into p. Now, from the method of moments unknown parameter p is estimated such that 
mu one dash is equal to m one dash.

But m one dash is equal to summation xi by k which is equal to x bar where x one, x two , etc 
till xk  are the  k observations drawn from the Binomial population.
Hence mu one dash is equal to n into p which is equal to m one dash which is equal to x bar. 
Therefore Moment estimator of p is given by p cap which is equal to m one dash by n which is 
equal to x bar by n

1) Obtain an moment estimator of  theta  of a  Uniform population with parameters  zero and 
theta
We know that when  xi follows Uniform distribution with range zero and theta
The probability density function f of x is equal to one divided by theta while xi can range from 
zero to theta
The first population moment  mu one dash is equal to theta by two
Now from the method of moments unknown parameter   theta is estimated such that mu one 
dash is equal to m one dash

But m one dash is equal to summation xi by n, i runs from one to n, which is equal to x bar. 
Hence mu one dash is equal to theta by two which is equal to m one dash which is equal to x 
bar. Therefore Moment estimator of  theta  is given by  theta cap is equal to two into x bar

2) Find the moment estimator of theta in an exponential distribution with mean   theta we know 
that when x i follows exponential distribution with mean theta, the probability density function f 
of x is equal to one by theta into e to the power minus xi by theta, zero less than xi less than 
infinity.
The first population moment mu one dash is equal to theta. Now from the method of moments 
unknown parameter   theta is estimated such that mu one dash is equal to m one dash

But m one dash is equal to summation xi by n, i runs from one to n, which is equal to x bar. 
Hence mu one dash is equal to theta which is equal to m one dash which is equal to x bar. 
Therefore Moment estimator of  theta  is given by theta cap is equal to x bar



5. Illustrations Contd 
Obtain the moment estimators of mean and variance of a Normal population with parameters 
mu and sigma square.
Let  Xi  follow  Normal  distribution  with  mean  mu  and  variance  sigma  square.  Since  two 
parameters are unknown we need to find mu one dash and mu two dash. But for a Normal 
variate with parameters    mu  and  sigma square mu one dash is equal to Expected value of 
X which is equal to mu and mu two is equal to sigma square

Now from the method of moments unknown parameter   mu and sigma square are estimated 
such that mu one dash is equal to m one dash and mu two dash is equal to m two dash.  But 
m one dash is equal to summation xi by n, i runs from one to n, which is equal to x bar and m 
two dash is equal to summation xi square by n, i runs from one to n. Hence mu one dash is 
equal to mu which is equal to m one dash which is equal to x bar.  From the method of 
moments unknown parameter   mu is estimated such that mu one dash is equal to m one 
dash.

Hence an estimate of mu, mu cap is equal to x bar. But since mu two is equal to sigma square 
which implies mu two is equal to mu two dash minus mu one dash whole square which is 
equal to sigma square. Hence an estimate of variance Mu two cap is equal to sigma cap 
square which is equal to m two dash minus m one dash  square which is equal to summation 
x i square by n minus x bar square which is equal to s square. Therefore Moment estimator of 
parameter mu and sigma square are given as mu cap is equal to x bar and sigma cap square 
is equal to summation xi square by n minus x bar square which is equal to s square.

Is moment estimate uniquely determined?  Explain with an example.
Let x one, x two, etc till xn be a sample taken from a Normal population with mean zero and 
variance sigma square. Then mu one dash is equal to expected value of x which is equal to 
zero and mu two is equal to sigma square.  But since mu two is equal to sigma square implies 
mu two is equal to mu two dash minus mu one dash square which is equal to mu two dash, 
since mean mu one dash is  equal  to  zero.  Now from the method of  moments unknown 
parameter   mu and sigma square are estimated such that mu one dash is equal to m one 
dash and mu two dash is equal to m two dash.

By equating mu two dash is equal to m two dash we get sigma square is equal to summation 
xi square by n. By equating mu two is equal to m two we get sigma cap square is equal to 
summation xi square by n minus x bar square which is equal to s square. Since m two is 
equal to m two dash minus m one dash square which is equal to  summation xi square by n 
minus x bar square.  If  xi  follows Normal  distribution with mean zero and variance sigma 
square then the moment estimators of  sigma square  are 
Sigma square is equal to  summation xi square by n 
Sigma square is equal to  s square
Hence Moment estimators are not unique.

Let x one, x two, etc, xn be a sample taken from a Normal population with mean zero and 
variance theta. Find the moment estimate of theta. Given xi’s follows Normal distribution with 
mean zero and variance theta. The first population moment mu one dash is equal to Expected 



value of x which is equal to zero. The second population moment mu two dash is equal to 
expected value of x square which is equal to variance of x plus expected value of x  square 
which is equal to theta plus zero equals to theta
Hence mu two dash is equal to theta

Now by  the method of moments unknown parameter  θ   is estimated such that mu one dash 
is equal to m one dash and mu two dash is equal to m two dash
But m one dash is equal to summation xi, i runs from 1 to n by n which is equal to x bar and m 
two dash is equal to summation xi square, i runs from 1 to n by n. But s square is equal to 
summation,  i  runs from 1 to  n (  xi  minus x bar  )  whole  square by n  which is  equal  to 
summation xi square by n minus x bar square which implies s square plus x bar square is 
equal to summation xi square by n. Hence mu one dash is equal to mu which is equal to m 
one dash which is equal to x bar is equal to zero. Call this as (1)

Mu two dash is equal to m two dash which implies theta is equal to s square plus x bar square 
which is equal to summation xi square by n. From  equation one therefore, moment estimator 
of parameter  theta  is theta cap which is equal to summation xi square by n

Here’s a summary of our learning in this session where we have understood:

• The  method of moments

• The basic principles of  method of moments

• Properties of the method

• Limitations and advantages of the method of moments

• Illustrative examples to determine the moment estimators


