
1. Introduction
Welcome to the series of E-learning modules on Methods of Estimation. In this module, we 
are  going  to  cover  the  various  methods  of  estimation-  Point  Estimation  and  Interval 
estimation.  Methods  of  Point  estimation –  method  of  moments and method of  maximum 
likelihood, their limitations, advantages and properties.

By the end of this session, you will be able to: 

• Explain the types of estimation

• Explain the methods of point estimation

• Explain the method of moments

• Explain the methods of maximum likelihood

• List the limitations, applications and properties of these methods

Any  statistical  investigation  aims  at  making  generalisations  from  sample  to  population. 
Moreover,  selecting a random sample is essential for drawing valid conclusions about the 
population. Methods of estimation develops theoretical basis of connection between sample 
information  and  population  model.  This  in  turn  permits  inference  about  the  population.

Suppose in a specified population we are interested in the population average mu, then we 
might use the sample mean x bar to estimate the population mean. For example, we might 
wish to make a statement about mean cholesterol level of all men residing in India. It is then 
obvious  to  use  a  sample  mean  as  an  estimate  of  the  population  mean.  

Similarly,  the  value  of  the  sample  proportion p is  a  point  estimate  of  the  population 
proportion P. Since a sample is only a part of the population, numerical value of the sample 
mean cannot be expected to give exact value of the parameter. Moreover, the value of the 
mean  depends  on  the  particular  sample  that  happens  to  be  selected.  

For example,  two different  samples of same size from the same population will  yield two 
different means. This is because a sample mean is a random variable. In general, if x one, x 
two, up to xn is a random sample, then any function of x one, x two, up to xn is a random 
variable.   

True value of a parameter is an unknown constant that can be correctly ascertained only by 
an exhaustive study of the population, if indeed that were possible. Our objective may be to 
obtain a guess or an estimate of the unknown true value along with the determination of its 
accuracy. This type of inference is called estimation of parameters.

Estimation is the process by which sample data are used to indicate the value of an unknown 
quantity in a population.
Results of estimation can be expressed as a single value, known as a point estimate, or a 
range of values, known as an interval estimate.

Example 
Suppose a manager of a bank wanted to know the average number of visits of customers to 



the bank in the last year, he could calculate the average number of visits of the hundreds (or 
perhaps thousands) of customers who have transactions in the bank, that is, the population 
mean. Instead, he could use an estimate of this population mean by calculating the mean of a 
representative sample of customers. If this value was found to be sixty, then sixty would be 
his estimate.



2. Methods of Estimation
There are two methods of estimation, they are: 

• Point Estimation  and

• Interval Estimation

Point Estimation
An objective of point estimation is to compute a single value from the sample data that is 
likely to be close to the unknown value of the parameter. A statistic intended for estimating a 
parameter is called a point estimator or simply an estimator of the parameter. 

A point estimate is often insufficient, because it is either right or wrong. If you are told only 
that, a point estimate of average number of students for a particular course is wrong, you do 
not know how wrong it is, and you cannot be certain of the estimates reliability. If you learn 
that, it is off by only ten students you can accept the closer figure of enrolment of students as 
a good estimate of future enrolment. 

Without an assessment in accuracy, a single number quoted as an estimate may not serve a 
very  useful  purpose.  We must  indicate  an estimate  of  variability  in  the distribution of  an 
estimator. The standard error provides information about its variability.
Therefore, point estimate is much more useful if it is accompanied by an estimate of the error 
that might be involved.

Interval estimation
Assume  that  we  have  a  sample  (x  one,  x  two,  up  to  xn)  from  a  given  population.  All 
parameters of the population are known except some parameter theta. 
We want to determine from the given observations unknown parameter theta.

In other words, we want to determine a number or range of numbers from the observations 
that can be taken as a value of an unknown parameter theta. 
Interval  estimation  is  a  process  of  defining  two  numbers,  between  which  a  population 
parameter is said to lie. For example, a less than x less than b is an interval estimate of the 
population mean mu. It indicates that the population mean is greater than a but less than b.
An interval estimate is a range of value used to estimate a population parameter.
Because of the presence of sampling error, sometimes it is more useful to start with the point 
estimate, and then establish a range of values both above and below the point estimate.
In  practice,  confidence  interval  estimates  are  used  more  commonly  by  far  than  point 
estimates. Nevertheless, since point estimates are used in certain important ways in statistics, 
and carry with them some important concepts and terms, we need to look at them briefly in 
this course.



3. Two Popular Methods of Point 
Estimation

Methods of Point Estimation:

There are several methods using which we can obtain the point estimates of the population 
parameters. Some of them are:

• Method of moments

• Method of maximum likelihood

• Method of least squares

• Method of minimum variance

• Method of Chi square etc

However,  our  study  is  concentrated  only  on  two  popular  methods  they  are  Method  of 
moments and Method of maximum likelihood.

The method of moments
The method of moments is the oldest method of deriving point estimators. It usually produces 
some asymptotically unbiased estimators, although they may not be the best estimators.
The method of moments was discovered by Karl Pearson. The method is as follows.

Let f of (x, theta one, theta two, up to theta k) be the density function of the population under 
consideration. To estimate the unknown parameters theta one, theta two up to theta k  if  mu r 
dash  denotes the rth  moment (about zero) then by definition, 
Mu r dash is equal to integral of x to the power r into f of (x, theta one, theta two, up to theta k) 
dx 
Where, r is equal to one, two,.. etc. 

That is, 
Mu 1 dash is equal to integral of x into f of ( x, theta one, theta two, up to theta k) dx 
Mu 2 dash is equal to integral of x to the power 2 into f of (x, theta one, theta two,  up to theta 
k) dx 
Up to 
Mu k dash is equal to integral of x to the power k into f of (x, theta one, theta two up to theta 
k) dx 
Mu 1 dash, mu 2 dash, up to mu k dash  are in general functions of the parameters  theta 1, 
theta 2, up to theta k. Thus, the above is a set of k equations involving k unknown parameters 
theta 1, theta 2, up to theta k. 

Now solving the equations, theta 1, theta 2, up to theta k can be written as the functions of Mu 
1 dash, mu 2 dash, etc mu k dash. But in general, Mu 1 dash, mu 2 dash, up to mu k dash 
are unknown and hence their estimators by sample moments m 1 dash, m 2 dash, up to m k 
dash respectively where mr dash is equal to summation xi to the power r by n, x one, x two, 
up to xn being sample observations are determined. 



In case of frequency distribution of the sample observations, rth  sample moment m r dash  is 
given by mr dash is equal to summation fi into  xi to the power r by  N. Thus, the method of 
moments consists in equating rth raw moments about the origin in the population to the rth 
raw moments about the origin in the sample by giving values r is equal to one, two, etc. And 
obtaining various equations containing parameters and solving these equations to obtain the 
estimate of the parameters. 

Properties:

• Moment estimators are consistent provided the population moments exists

• Moment estimators need not be unbiased

• Under certain conditions, moment estimators have an asymptotic normal distribution

• Moment estimators are less efficient than maximum likelihood estimators

Method of maximum likelihood
In  statistics, Maximum-Likelihood  Estimation (MLE)  is  a  method 
of estimating the parameters of  a statistical  model.  When applied  to  a  data  set  and  given 
a statistical  model,  maximum-likelihood  estimation  provides estimates for  the  model's 
parameters.

The method of maximum likelihood corresponds to many well-known estimation methods in 
statistics. For example, one may be interested in the heights of adult female giraffes, but we 
are unable to measure the height of every single giraffe in a population due to cost or time 
constraints. 

Assuming  that  the  heights  are normally  or  (Gaussian)  distributed with  some 
unknown mean and variance, the mean and variance can be estimated with MLE while only 
knowing the heights of some sample of the overall population. MLE would accomplish this by 
taking the mean and variance as parameters and finding particular parametric values that 
make the observed results the most probable.

The method of maximum likelihood provides a basis for many of the techniques. The reasons 
are:
• The method has a  good intuitive  foundation.  The underlying concept is  that,  the best 
estimate  of  a  parameter  is  giving  the  highest  probability  that  the  observed  set  of 
measurements will be obtained
• The least-squares method and various approaches for  combining errors  or calculating 
weighted  averages,  etc.  can  be  derived  or  justified  in  terms  of  the  maximum  likelihood 
approach



4. Applications, Principles and 
Properties of MLE
Applications of the method of maximum likelihood
Maximum likelihood estimation is used for a wide range of statistical models, including:
• Linear Models and generalized linear models
• Exploratory and confirmatory factor analysis
• Structural Equation Modelling
• Many situations in the context of hypothesis testing and confidence interval formation
• Discrete Choice models

These uses arise across applications in widespread set of fields, including:
1. Communication Systems
2. Psychometrics
3. Econometrics
4. Time-delay of arrival (TDOA) in acoustic or electromagnetic detection
5. Data modelling in nuclear and particle physics
6. Magnetic resonance imaging
7. Computational Phylogenetics
8. Origin/destination and path-choice modelling in transport networks
9. Geographical satellite-image classification

On  the  other  hand,  MLE  is  not  as  widely  recognized  among  modellers  in  psychology. 
However, it is a standard approach to parameter estimation and inference in statistics. MLE 
has many optimal properties in estimation:

• Sufficiency - complete information about the parameter of interest contained in its MLE 
estimator

• Consistency - true parameter value that generated the data recovered asymptotically, 
i.e. for data of sufficiently large samples

• Efficiency - lowest-possible variance of parameter estimates achieved asymptotically 
and 

• Parameterization  invariance  -  same  MLE  solution  obtained  independent  of  the 
parameterisation used

The principle of Maximum Likelihood Estimation (MLE) originally developed by R. A. Fisher in 
the nineteen twenties, states that the desired probability distribution is the one that makes the 
observed data ‘‘most likely,’’ which means that one must seek the value of the parameter 
vector that maximizes the likelihood function.

Principles
Suppose  there  is  a  sample x  one, x  two,  up  to  xn of n independent  and  identically 
distributed observations,  coming  from  a  distribution  with  an  unknown pdf  ƒ  of  dot.  It  is 
however surmised that the function ƒ belongs to a certain family of distributions {ƒ of (dot, 
theta), where theta belongs to the parameter space}, called the parametric model, so that ƒ is 



equal to ƒ of (dot, theta). 

The value theta  is unknown and is  referred to as the "true value"  of  the parameter.  It  is 
desirable to find an estimator theta cap, which would be as close to the true value theta as 
possible. Both the observed variables xi and the parameter theta can be vectors.
To use the method of maximum likelihood, one first specifies the joint density function for all 
observations. 

For an independently identically distributed  sample, this joint density function is
F  of (x one, x two, up to xn , theta) is equal to f of (x one, theta) into f of (x two, theta) into up 
to f of (x n, theta)  
Now,  we  look  at  this  function  from  a  different  perspective  by  considering  the  observed 
values x one, x two, up to xn to be fixed "parameters" of this function, whereas theta will be 
the function's variable and allowed to vary freely. This function will be called the likelihood:
L of (theta, x one, x two, up to xn ) is equal to f (x one, x two, up to xn , theta) which is equal 
to product of f of ( x i, theta), i runs from 1 to n

In practice, it is more convenient to work with the logarithm of the likelihood function, called 
the log-likelihood.
Natural log of L of (theta, x one, x two, up to xn ) is equal to summation, i runs from 1 to n 
natural log of f of (xi, theta)
We will get the point estimator of the parameter theta by maximizing the above function. 
Hence,  the method of  maximum likelihood estimates theta by finding a  value of theta that 
maximizes L of (xi, theta) or natural log of L of (xi, theta). This method of estimation defines a 
maximum-likelihood estimator (MLE) of theta.

An MLE estimate is the same regardless of whether we maximize the likelihood or the log-
likelihood function, since as the likelihood function increases, decreases log likelihood also 
increases, or decreases. Log is a transformation. We can maximize the function by making 
use of principle of  differentiation if  the function is differentiable.  In case the differentiation 
technique fails to get the maximum value of the function, then we have to make use of basic 
principle of MLE.
A maximum likelihood estimator coincides with the most probable Bayesian estimator given 
a uniform prior distribution on the parameters.

Properties
A maximum-likelihood  estimator  is  an extremum  estimator obtained  by  maximizing,  as  a 
function of theta, the objective function.
Maximum-likelihood estimators have no optimum properties for finite samples, in the sense 
that (when evaluated on finite samples) other estimators have greater concentration around 
the true parameter-value.

However, like other estimation methods, maximum-likelihood estimation possesses a number 
of  attractive limiting  properties.  As  the  sample-size  increases  to  infinity,  sequences  of 
maximum-likelihood estimators have these properties:
Consistency:  A subsequence of the sequence of MLEs converges in probability to the value 
being estimated
Asymptotic normality: as the sample size increases, the distribution of the MLE tends to the 



Gaussian distribution

Efficiency : MLE’s are most efficient among the class of all consistent estimators. That is 
among the class of consistent estimators MLE has the minimum variance 



5. Regularity Conditions of MLE
Maximum-likelihood estimators can lack asymptotic normality and can be inconsistent if there 
is a failure of one (or more) of the below regularity conditions:
Estimate on boundary
Sometimes the maximum likelihood estimate  lies  on the boundary of  the set  of  possible 
parameters, or (if the boundary is not, strictly speaking, allowed) the likelihood gets larger and 
larger as the parameter approaches the boundary.  Standard asymptotic theory needs the 
assumption that the true parameter value lies away from the boundary. If we have enough 
data, the maximum likelihood estimate will keep away from the boundary too. 

Data boundary parameter-dependent
For the theory to apply in a simple way, the set of data values that has positive probability (or 
positive probability density) should not depend on the unknown parameter. 

A simple example where such parameter-dependence does hold is the case of estimating 
theta  from  a  set  of  independent  identically  distributed  when  the  common  distribution 
is uniform on the range (zero , theta). For estimation purposes, the relevant range of theta is 
such that theta cannot be less than the largest observation. Because the interval (zero, theta) 
is not compact, there exists no maximum for the likelihood function.

Nuisance parameters
For maximum likelihood estimations, a model may have a number of nuisance parameters. 
For the asymptotic behaviour outlined to hold, the number of nuisance parameters should not 
increase with the number of observations (the sample size). 

Increasing information
For  the  asymptotic  to  hold  in  cases  where  the  assumption  of independently  identically 
distributed observations does not hold, a basic requirement is that the amount of information 
in the data increases indefinitely as the sample size increases. Such a requirement may not 
be met if either there is too much dependence in the data (for example, if new observations 
are essentially  identical  to existing observations),  or  if  new independent observations are 
subject to an increasing observation error.

Here’s a summary of our learning in this session, where we understood:

• The various methods of estimation

• The methods of point estimation

• The method of moments

• The method of maximum likelihood

• The limitations, applications  and properties of the methods


