
1. Introduction
Welcome to the series of E-learning modules on Linderberg Theorems. In this module, we are 
going  to  cover  the  concept of  Linderberg  conditions,  statements  of  Linderberg  -Levy 
Theorem, Linderberg- Lyapunov’s Theorem and Linderberg- Feller Theorem and implications 
and applications of the theorems.

By the end of this session, you will be able to: 

• Explain the classical approach of  Central Limit Theorem

• Explain the Linderberg conditions

• State the Linderberg-Levy theorem, Lyapunov theorem and Linderberg-Feller Central 
Limit Theorem 

• Explain the applications of the theorems

Whenever  we  come  across  the  sequences  of  random  variables,  we  are  interested  in 
behaviour of the functions of random variables such as means, variances, and proportions. 
However, for large samples, exact distributions can be difficult or impossible to obtain. 

Limit Theorems can be used to obtain properties of estimators as the sample sizes tend to 
infinity. Let us recall the concepts we discussed in the previous topics.

• Convergence in probability  gives  limit of an estimator

• Convergence in distribution gives limit of a cumulative distribution function

• Weak  Law of  Large  Numbers  (WLLN):  States  that  a  sample  mean  converges  in 
probability to  the population mean mu

We know that if we take a sample of size n from a population whose elements have mean mu 
and standard deviation sigma,  the sample mean x  bar  will  have mean mu and standard 
deviation sigma by root n. One of the most important results of the probability theory known 
as CLT states that, for given certain conditions, the mean (thus also the sum) of a sufficiently 
large number of independent random variables, each with finite mean and variance, will be 
approximately normally distributed.  

The preceding version  of the CLT is the most general form and it is shown as summation Xi, 
which will have an approximate normal distribution even in cases where the random variables 
Xi have different distributions. In fact, all the random variables tend to be roughly the same 
magnitude, so that none of them tends to dominate the value of the sum. It can be shown that 
the sum of the large number of independent random variables will  have an approximately 
normal distribution.

CLT not only gives the method for approximating the distribution of the sum of the random 
variables but also it helps to obtain remarkable facts that the empirical frequencies of so many 
naturally occurring populations exhibit a bell shaped (that is normal) curve. 

In fact,  one of  the first  uses of  the CLT was to provide the theoretical  justification of  the 
empirical fact that the measurement errors tend to be normally distributed. That is about an 



error in measurement as being composed of the sum of a large number of small independent 
errors. The CLT implies that it should be approximately normal.

For instance, an error of measurement in Astronomy can be regarded as being equal to the 
sum of the small errors caused by the following things: 

• Temperature effects on the measuring device

• Bending of the device caused by the rays of the sun

• Elastic effects

• Air currents

• Air vibrations

• Human errors

Therefore, by CLT the total measurement errors will approximately follow normal distribution. 
From this, it follows that a histogram of errors resulting from a series of measurements of the 
same object will tend to follow a bell-shaped normal curve.
The CLT also partially explains why many data sets related to biological characteristics tends 
to be approximately normal. For instance consider a particular couple, name them Maria and 
Peter and consider the heights of their daughters (say when they are 20 years old).

Now, the height of the daughter may be composed of the sum of large number of roughly 
independent random variables – relating, among other things, to the random set of genes that 
the daughter received from her parents as well as environmental factors. Since each of these 
variables play only a small role in determining the total height and it is reasonably based on 
the CLT. Thus, the height of Peter’s daughter would be Normally distributed. 

If the Peter’s family has many daughters, then the histogram of their heights should roughly 
follow a normal curve.  (The same thing is true for sons of Peter and Maria, but the normal 
curve of  the sons would have different  parameters from one of  the daughters).  The CLT 
cannot be used to conclude that a plot of the heights of all the children would follow normal 
curve because the gender factor does not play a small role in determining height.

Thus, the CLT can be used to explain why the heights of the daughters of a particular pair of 
parents will follow a Normal curve. However, the theorem does not explain why a histogram of 
the heights of the collection of daughters from different parents will follow a Normal curve. To 
understand why the theorem does not  explain  the  histogram,  we will  consider  the same 
example with an addition of daughters of Henry and Catherine. 

By the  same argument  given  earlier  the  height  of  Catherine’s  daughter  will  be  Normally 
distributed as well as the height of Maria’s daughter. However, the parameters of these two 
normal distributions will be different. By the same reasoning, we can conclude that the heights 
of  collection  of  many  women  form  different  families  will  come  from  different  Normal 
distributions. Therefore, it is evident that a plot of those heights would itself follow  a Normal 
curve.

The central limit theorem has a number of variants. In its common form, the random variables 
must be identically distributed. In variants, convergence of the mean to the normal distribution 
also occurs for non-identical distributions, given that they comply with certain conditions.



In  more  general probability  theory, a central  limit  theorem is  a  set  of weak-
convergence theories. They all express the fact that a sum of many i.i.d. random variables, or 
alternatively,  random  variables  with  specific  types  of  dependence,  will  tend  distribute 
according to one of a small set of attractor distributions. 
When the  variance  of  the  i.i.d.  variables  is  finite,  the  attractor  distribution  is  the  normal 
distribution. 



2. Classical and Linderberg CLT
Classical CLT

Let  X1, up to Xn be a random sample of size n, that is, a sequence of i.i.d random variables 
drawn  from  distributions  of expected  values  given  by  mu   and  finite variances given  by 
sigma square. 

Suppose  we  are  interested  in  the sample  average of  these  random variables.  Then,  by 
the law of large numbers, the sample averages converge in probability and is almost closer to 
the expected value  mu  as n tends to infinity. The classical central limit theorem describes the 
size and the distributional form of the stochastic fluctuations around the deterministic number 
mu during this convergence.

More precisely, it states that as n gets larger, the distribution of the difference between the 
sample average  Xn bar and its limit  mu, when multiplied by the factor  root n (that is  (root n 
into  X n  bar  minus mu)),  approximates the normal  distribution with  mean 0  and  variance  
sigma square. For large enough n, the distribution of Sn is close to the normal distribution 
with  mean n  mu and variance n sigma square.  The usefulness of  the theorem is  that  the 
distribution of root n (Xn bar   minus   mu) approaches normality regardless of the shape of 
the distribution of the individual Xi’s. 

The first turning point for the Central Limit problem was the popular Lyapunov’s theorem given 
in Nineteen zero one. There have been many studies of the problem since then all aimed at 
improving it.  The next significant step in this direction came in Nineteen twenty two when 
Linderberg  gave  the  sufficient  condition  which  was  later  in  Nineteen  forty  five  shown 
necessary by Feller too. 

It is the Linderberg-Feller Theorem, which makes the statement of CLT precise in providing 
the sufficient and necessary Linderberg condition whose satisfaction accounts for the smooth 
appearance of the bell shaped normal curve.
Here we provide a simpler, equivalent, and more easily interpretable probabilistic formulation 
of the Linderberg condition and demonstrate its sufficiency and partial necessity in the CLT 
using more elementary means.

The seeds  of  the  Central  Limit  Theorem lie  in  the  work  of  Abraham de  Moivre,  who,  in 
seventeen thirty three, not being able to secure himself an academic appointment, supported 
himself  consulting on problems of  probability,  and gambling.  He approximated the limiting 
probabilities of the Binomial distribution, the one which governs the behaviour of the number 
Sn of success in an experiment, which consists of n independent trials, each one having the 
same probability p  belongs to  (0, 1) of success.

Linderberg proves sufficiency in Nineteen twenty two and necessity by Feller in Nineteen 
thirty five. Linderberg-Feller CLT is one of the most far-reaching results in probability theory. 
Nearly all  generalizations of  various types of  central  limit  theorems spin from Linderberg-
Feller CLT, such as, for example, CLT for martingales, for renewal processes, or for weakly 
dependent processes. The insights of the Linderberg condition are that the wild values of the 
random  variables,  compared  with  Sn,  the  standard  deviation  of  Sn  as  the  normalizing 



constant, are insignificant and can be truncated off without affecting the general behaviour of 
the partial sum Sn.

The following gives a self-contained treatment of  the central  limit  theorem. It  is based on 
Lindeberg’s method. We assume that X1,  up to Xn are independent random variables with 
means 0 and respective variances unity. 

Linderberg CLT
For every  epsilon  greater than  0 
Limit  as n tends to infinity of 1  by sn square summation Expected value of (Xi minus mu i 
whole square into I for all modulus of (Xi minus mu i greater than epsilon  into sn is equal to 
zero
Where I is the indicator function. Then the distribution of the standardized sums 1 by sn into 
summation (Xi minus mu i) converges towards the standard normal distribution  with mean 0 
and variance 1



3.  Linderberg  –  Levy  Theorem 
(CLT) and Lyapunov’s Theorem
Linderberg – Levy Theorem ( CLT)
Let {Xk} be the sequence of independent and identically distributed random variables  with 
Expected value of Xk is equal to mu   and variance of Xk is equal to sigma square  which is 
finite, then 
Summation k runs from 1 to n (Xi minus mu by sigma into root n) is asymptotically Normal 
with mean 0 and variance 1

In other words,  as n  approaches infinity,  the random variables  root  n into (Xn bar minus 
mu) converge in distribution to a  Normal, that is  Normal  with mean  0 and variance sigma 
square. That is
Root n into (summation Xi by n minus mu) converges in distribution to Normal distribution with 
mean 0 and variance sigma square. 

In  the  case sigma greater  than  0,  convergence  in  distribution  means that  the cumulative 
distribution functions of root n into (Xn bar minus mu) converge point wise to the cumulative 
distribution function of the Normal distribution with  mean 0 and variance sigma square. For 
every real number z, 
Limit as n tends to infinity Probability of root n into (Xn bar minus mu)  less than or equal to z 
is equal to Phi of z by sigma 
Where,   Phi  of  x  is  the standard normal   density  function  evaluated at x.  Note  that  the 
convergence is uniform in z  that is 
Limit as n tends to infinity  Supremum as z belongs  real  R Probability of root n into (Xn bar 
minus mu) less than or equal to z  minus  Phi of z by sigma is equal to 0 
Where, supremum denotes the least upper bound (or supremum) of the set. 

The Linderberg–Levy central limit theorem relates to the statistic, root n into (Xn bar minus 
mu) and not directly to X. There are numerous CLTs.  They differ in the assumptions required 
for their use. The Linderberg–Levy CLT is a particularly simple one and sufficient for most of 
the analysis.

Thus, in the case of i.i.d random variables (the case of equal components as it is sometimes 
called) it is sufficient to assume that the common distribution function F of Xk has a finite 
variance for the Central Limit Theorem to hold. But if the Xk is not identically distributed we 
need  some  further  conditions  for  the  validity  of  the  Central  Limit  Law.  The  purpose  of 
additional conditions is to reduce the probability that an individual Xk will have a relatively 
large contribution to  the sum  summation Xk.  Such sufficient  conditions were provided by 
Linderberg and Lyapunov. 

Lyapunov’s Theorem: CLT
Let {Xk} be the sequence of independent  random variables  with with Expected value of Xk is 
equal to mu  k and variance of X k  is equal to sigma k square      and  Expected value of 
modulus of Xk minus mu k to the power 2 plus delta  is finite,   then summation (Xk minus mu 



k by Cn) is asymptotically Normal with mean 0 and variance 1  provided  
Limit  as n tends to infinity of 1 by Cn to the power 2 plus delta summation Expected value of 
modulus of Xk minus mu k to the power 2 plus delta   is equal to zero ,  for some  delta , 0 
less than delta less than or equal to 1 where Cn square is equal to summation sigma k square 

Sometimes a particular case of the above theorem with  delta equal to 1is also stated as 
Lyapunov’s theorem. However, these theorems are not satisfactory, because the moments of 
higher  order  are  used.   A sufficient  condition  which  is  almost  necessary is  given by the 
Linderberg – Feller theorem.



4.  Linderberg  –  Feller  Theorem 
CLT 
Let {Xk} be the sequence of independent  random variables  with with Expected value of Xk is 
equal to mu  k and variance of Xk  is equal to sigma k square      which is finite  and Fk be the 
distribution function of Xk then, 

• Summation (Xk minus mu k by Cn) is asymptotically Normal with mean 0 and variance 
1   and  

• Limit  as n tends to infinity maximum for all k less than or equal to n sigma k by Cn is 
equal to zero,   holds if and only if for all  epsilon greater than 0 

bn of epsilon is equal to 1 by Cn  square  summation  k runs from 1 to n,  Integral  over 
modulus of  X  minus mu k greater than or equal to epsilon Cn of  X  minus mu k  whole 
square d  F k of  x  tends to zero as n tends to infinity. Call this as (1) 
In the above statement, Cn square is equal to summation sigma k square. 

In other words, Linderberg-Feller Central Limit Theorem can also be stated as 
If the random variates  X1, X2 etc  satisfy the Linderberg condition, then for all  a less than b, 
Limit as n tends to infinity Probability of (a less than Sn minus E of Sn  by sn less than b) is 
equal to Phi of b minus Phi of a 
where  Phi is the normal distribution function. 

We  may  note  that  Lyapunov’s  condition  implies  Linderberg  condition,  but  Lyapunov’s 
condition is easy to verify in actual practice. Given a sequence of random variables, we first 
try to see whether Lyapunov’s condition is satisfied and if  the answer is in negative, one 
proceeds  with  the  verification  of  Feller’s  condition.  As  stated  earlier,  Linderberg  Fellers 
condition is sufficient for CLT which implies condition of Linderberg Feller theorem also. 

In statistics, a theory stating that the sample size of identically distributed random numbers 
approaching  infinity,  it  is  more  likely  that  the  distribution  of  the  numbers  will 
approximate normal distribution. 
That is, the mean of all samples within that universe of numbers will be roughly the mean of 
the whole sample.



5. Applications 
• If   the Xk’s are Gaussian, then the sum S is Gaussian and as n tends to infinity, S is 

again Gaussian 

• If the Xk’s are Binomial, S is Binomial and as n tends to infinity, S is Gaussian 

• If the Xk’s are Poisson, S is Poisson and as n tends to infinity, S is Gaussian 

• If the Xk’s are Gamma, S is Gamma and as n tends to infinity, S is Gaussian 

• If the Xk’s are Negative Binomial, S is Negative Binomial and as n tends to infinity,  S is 
Gaussian 

However, CLT is not applied for Cauchy distribution
If the Xk’s are Cauchy,   S is  Cauchy but  as  n tends to infinity,  S is  still Cauchy and not 
Gaussian or (Normal)

The Central Limit Theorem is one of the most striking and useful results in probability and 
statistics. It explains why the normal distribution appears in areas as diverse as gambling, 
measurement  error,  sampling,  and  statistical  mechanics.  In  essence,  the  Central  Limit 
Theorem  states  that  the  normal  distribution  applies  whenever  one  is  approximating 
probabilities for a quantity, which is a sum of many independent contributions all of which are 
roughly the same size.

Here’s a summary of our learning in this session, where we understood:

• The importance  of Central Limit Theorem

• The classical approach  of the theorem

• The  statement  of  Linderberg  –Levy,  Lyapunov,  Linderberg-  Feller  Central  Limit 
Theorems

• The implications  and applications  of the theorems


