
Frequently Asked Questions 

 

1. State Linderberg Central Limit Theorem. 

Answer: 

We assume that X1,…….., Xn are independent random variables with means µi  and 

respective variances σi 
2. then 

For every ε > 0 
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where 1{…} is the indicator function. Then the distribution of the standardized 

sums  converges towards the standard normal distribution N(0,1) 

where sn,the standard deviation of Sn 

2. When do we say that a random variable is  asymptotically Normally distributed? 

Answer: 

If the distribution of a random variable Y depends on a parameter n and if there exists two 

quantities µ or σ  (which may or may not depend on n such that  
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Then we say that Y is asymptotically Normally distributed with mean µ and variance σ2 

3. State the  significant contribution  of Central Limit Theorem to measurement errors. 

Answer: 

Not only does the CLT give us the method for approximating the distribution of the sum of 

the R.Vs but also it helps to obtain remarkable facts that the empherical frequencies of so 

many naturally occurring populations exhibit a bell shaped ( that is normal) curve.  

Indeed, one of the first uses of the CLT was to provide  theoretical justification of the 

empherical fact that the measurement errors tend to be Normally distributed. That is by 

regarding an error in measurement as being composed of the sum of a large number of  

small independent errors, the CLT implies that it should be approximately Normal. 

4. How do you apply CLT  to measurement errors? 



Answer: 

For instance an error of measurement in astronomy  can be regarded as being equal to  the 

sum of the small errors caused by such things as  

1) Temperature effects on the measuring devise 
2) Bending of the devise caused by the rays of the sun 
3) Elastic effects 
4) Air currents 
5) Air vibrations 
6) Human errors 

Therefore by CLT the total measurement errors  will approximately follow Normal 

distribution. From this it follows that a histogram of errors resulting from a series of 

measurements of the same object will tend to follow a bell-shaped Normal curve. 

5. Distinguish between Law of Large Numbers and CLT. 

Answer: 

By the law of large numbers, the sample averages converge in probability and almost 

surely to the expected value µ as n tends to infinity. The classical central limit theorem 

describes the size and the distributional form of the stochastic fluctuations around the 

deterministic number µ during this convergence.  

6. What is the significance of Linderberg  theorems? 

Answer: 

The seeds of the Central Limit Theorem, or CLT, lie in the work of Abraham de Moivre, who, 

in 1733, not being able to secure himself an academic appointment, supported himself 

consulting on problems of probability, and gambling. He approximated the limiting 

probabilities of the Binomial distribution, the one which governs the behavior of the number 

Sn of success in an experiment which consists of n independent trials, each one having the 

same probability p ∈ (0, 1) of success. 

 Sufficiency is proved by Lindeberg in 1922 and necessity by Feller in 1935. Lindeberg-Feller 

CLT is one of the most far-reaching results in probability theory. Nearly all generalizations of 

various types of central limit theorems spin from Lindeberg-Feller CLT, such as, for 

example,CLT for martingales, for renewal proceses, or for weakly dependent processes. The 

insights of the Lindeberg condition  are that the wild values of the random variables, 

compared with sn,the standard deviation of Sn as the normalizing constant, are insignificant 

and can be truncated off  without affecting the general behavior of the partial sum Sn. 

7. State  Linderberg – Levy  Central Limit Theorem. 

 Answer: 

Let {Xk} be the sequence of independent and identically distributed random variables  with 

with E(Xk)=µ  and V(Xk) = σ2 which is finite , then  
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Or in other words as n approaches infinity, the random variables √n( Xn  − µ) converge in 

distribution to a  Normal , that is  N(0, σ2) 

 

8. State Lyapunov’s CLT. 

Answer:  

Let {Xk} be the sequence of independent  random variables  with with E(Xk)=µk  and V(Xk) = 

σk
2    and ∞<−
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9. State Linderberg – Feller  Central Limit  Theorem. 

Answer: 

Let {Xk} be the sequence of independent  random variables  with with E(Xk)=µk  and V(Xk) = 

σk
2 which is finite  and Fk be the distribution function of X k then 
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10. What is Linderberg –Feller  CLT in terms of distribution function of Normal distribution. 

Answer: 



If the random variates , , ... satisfy the Lindeberg   condition, then for all a < b , 

  

where  is the normal distribution function. 

 

11. How can we say that  Linderberg- Levy  Theorem   is the  simple corollary to the 

Linderberg –Feller Theorem? 

Answer: 

Linderberg- Levy  Theorem   also follow as simple corollaries to the Linderberg –Feller 

Theorem 

For the case of i.i.d random variables with finite variance  σ2 condition (1) is always satisfied 

for  
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         as ∞→n  for  every 0>ε  because ∞→2σn  

12. What are the general applications of these  Theorems? 

Answer: 

If   the Xk’s are Gaussian S is Gaussian  and as n→∞,  S  is again Gaussian.  

If the Xk’s are  Binomial ,  S is  Binomial and  as  n→∞,  S is Gaussian.  

If the Xk’s are Poisson,  S is Poisson.  and as  n→∞,  S is Gaussian.  

If the Xk’s are Gamma,  S is Gamma and as  n→∞,  S is Gaussian.  

If the Xk’s are Negative Binomial,  S is Negative Binomial and as  n→∞,  S is Gaussian.  

But CLT is not applied for Cauchy distribution 

If the Xk’s are Cauchy,  S is  Cauchy but  as  n→∞,  S is  still Cauchy.  

13. State the assumptions behind Linderberg-Levy CLT? 

 Answer:   



The basic assumptions behind Linderberg Levy CLT are 

i) The variables are i.i.d 
ii) Variances of Sn= V(X1+X2+…+Xn) should exist or E(Xi2) should exist for all 

i=1,2,..,n 

14. If Yn is a Binomial variate with parameter n and p then prove that 
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Answer: 

Let X1,X2,...,Xk be i.i.d Bernoulli variate  that is Xi~B(1,p). Then Sn= X1+X2+…+Xn ~B(n,p) 

By Linderberg Feller CLT
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But given Yn ~B(n,p). Then E(Yn)=np and V(Yn)=npq. Hence using Yn instead of Sn 
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15. If Yn is distributed as Poisson with parameter n then prove that  
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Answer: 

Let X1,X2,...,Xk be i.i.d Poisson variates with parameter 1then  

Sn= X1+X2+…+Xn ~P(n) which implies Yn=Sn. Then  

By Linderberg Feller CLT 
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In particular take a= ∞−  and b =0 
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