
1. Introduction
Welcome to the series of E-learning modules on Central Limit Theorem. In this module we are 
going cover  the  concept  of  Central  Limit  Theorem,  implication  of  the theorem,  difference 
between Central Limit Theorem and Normal Theorem and Importance of the Central Limit 
theorem.

By the end of this session, you will be able to know: 

• Understand the Central Limit Theorem

• Describe Assumptions and Implication of the theorem

• Discuss the difference between Central Limit Theorem and Normal Theorem

• Understand Required sample size to follow the theorem

• Explain the importance  and applications of the theorem

 It is possible to draw more than one sample from the same population and the value of an 
estimator will in general vary from sample to sample. 
For example: the average value in a sample is an estimator. 

The average values in  more than one sample,  drawn from the same population,  will  not 
necessarily be equal. The probability distribution or probability density function of an estimator 
is known as sampling distribution.

The sampling distribution describes probabilities associated with an estimator when a random 
sample is drawn from a population.The probability distribution of sample mean drawn from a 
population  can be derived for the following two cases.

Case1: 
Suppose we know that the probability distribution of the population is Normal with mean µ and 
variance sigma square. In such a case each for Xi, ith observation in the sample will have 
Normal with mean mu and variance sigma square distribution. 
Then it can be proved mathematically that the probability distribution of  x bar will be a Normal 
curve with center at  mu and spread of   sigma by root n, and we call this  result as Normal 
theorem

Normal Theorem:
If  the  Random Variables X1,X2,  etc  till  Xn  are  independent  and identically  distributed as 
Normal ( mu, sigma square)  then  x bar is equal to summation xi by n is distributed as 
Normal ( mu, sigma square by n)    



2. Case 2
Case II :
We  may  not  know  the  exact  probability  distribution  of  the  population  or  the  population 
probability  distribution  may not  be Normal  or  close to  Normal  at  all.  In  such a  case the 
probability distribution of x bar is equal to summation xi by n   ( which depends on n) starts to 
take a bell shape 

when n is very large the probability distribution x bar is equal to summation xi by n  by Central 
Limit Theorem is almost Normal with center at  mu and spread ( Tail thickness) sigma by root 
n

The sampling distribution of the sample mean, x bar is approximated by a normal distribution 
when the sample is a simple random sample and the sample size, n, is large. 

In this case, the mean of the sampling distribution is the population mean, µ, and the standard 
deviation of the sampling distribution is the population standard deviation,  σ, divided by the 
square root of the sample size.  The latter is referred to as the standard error of the mean.
In symbols, the standard error is  sigma by root n

Suppose {Xk } is the sequence of Bernoulli  random variables taking values 1 with probability 
p, and 0 with probability 1 minus p is equal to q, then Expected value of Xk is equal to  p and 
Variance of Xk is equal to pq. If Sn is equal to summation Xk, Expected value of Sn is equal 
to np and Variance of Sn is equal to npq so that Sn minus np bu root npq is a Standard 
Normal variate with mean 0 and variance unity. 

Theoretical basis of this result is called CLT is given by Laplace. Ever since attempts have 
been made by probability theorists to weaken the assumptions under which the above holds.

Firstly  the condition that {Xk} is a sequence of independent Bernoulli Random variable  is 
replaced  by  the  condition  that  {Xk}  is  a  sequence  of  independent  identically  distributed 
Random variables with a common mean  mu and variance sigma square . Next the condition 
that the {Xk} has an identical distribution is relaxed.

Now the condition that the {Xk}’s are independent is being relaxed and replaced by milder 
restrictions.  Thus  the  above  property  which  is  proved  originally  for  Bernoulli  Random 
variables holds true for the more general random variables. This is called invariance principle.



3. Size of the Sample
How large must a sample be for the Central Limit theorem to apply?
The sample size varies according to the shape of the population.The CLT states that under 
rather general conditions sums and means of random samples of measurements drawn from 
a population tend to have an approximately Normal distribution . 

Suppose you toss a balanced die n is equal to one time.  The Random variable X is the 
number observed on the upper face. This familiar Random variable can take six values, each 
with probability one by six. The shape of the distribution is flat or Uniform and systematic 
about the mean mu is equal to three point five with a Standard deviation sigma is equal to one 
point seven one.

Now take a sample of size n is equal to two, from this population that is toss two dice  and 
record the sums of numbers on the two upper faces  summation Xi is equal to x one plus x 
two. There are thirty six possible outcomes each with probability one by thirty six. There is 
dramatic difference in the shape of the sampling distribution of x bar. It is now roughly mound 
shaped but still symmetric about the mean mu is equal to three point five.

Similarly for n is equal to three and n is equal to four the sampling distribution clearly shows 
the mound shape of the Normal Probability distribution still centred at mu is equal to three 
point five. Notice also that the spread of the distribution is slowly decreasing as the sample 
size n increases. 

The distribution of x bar is approximately Normally distributed based on a sample as small as 
n is equal to four. This phenomenon is the result of an important statistical theorem called the 
Central limit theorem.

If random samples of n observations are drawn from a Nonnormal population with finite mean 
mu and   Standard deviation sigma, then when n is large the sampling distribution of the 
sample  mean  x  bar  is  approximately  Normally  distributed  with  mean   mu  and  standard 
deviation sigma by root n
The approximation becomes more accurate as n becomes large.

Regardless of its shape the sampling distribution of x bar always has a mean identical to the 
mean  of  the  sampled  population  and  a  standard  deviation  equal  to  the  population  and 
standard deviation sigma by root n.
Consequently the spread of the distribution of the sample means is considerably less than a 
spread of the sampled population.

The CLT can be restated to apply to the sum of the sample measurements  summation xi, 
which, as n becomes large  also has an approximately Normal distribution  with mean n mu 
and  standard deviation sigma  into  root n
As you reread the CLT, you may notice that the approximation is valid as long as the sample 
size n is large’.
But now how large is  ‘large’? 
Unfortunately there is no clear answer to this question. The appropriate value of n depends 



on the shape of the population from which you sample as well as on how you want to use the 
approximation. 

However these guidelines will help to decide when the sample size is large enough?

• If the sampled population is normal , then the sampling distribution of x bar will also 
be Normal.  No matter what sample size you choose. The result  can be proven 
theoretically but it should not be too difficult for you to accept without proof

• When the sampled population is approximately systematic the sampling distribution 
of x bar becomes approximately Normal for relatively small values of n . Remember 
how rapidly the flat distribution in the dice example  become mound shaped ( n is 
equal to three)

• When the sampled population is skewed,  the sample size n must be larger, with n 
at least thirty , before the sampling distribution of  X bar becomes approximately 
Normal

These guidelines suggest that for many populations before the sampling distribution of  X bar 
will  be   approximately  Normal  for   moderate  sample  sizes,  an  exception  to  this  rule  is 
sampling a Binomial population  when either p or q  is equal to one minus p is very small. 
The sample size varies according to the shape of the population.

 However, for our use, a sample size of 30 or larger will suffice. A sample size of hundred or 
more elements is generally considered sufficient to permit using the CLT.   If the population 
from which the sample is drawn is symmetrically distributed,  n greater than thirty may be 
sufficient to use the CLT.

Note what the CLT says: If you have independent Random variables X one, X two  Etc  till X 
n,  each  ,with  the  same   distribution  which  has  mean  and  variance  ,   then  X  n  bar  is 
standardized by subtracting its  mean  and then dividing by its standard deviation  has a 
distribution that approaches a standard  Normal distribution. 

The key thing to note that it does not make any difference what common distribution X one, X 
two. Etc till X n;   have as long as they have a mean and variance.
Irrespective of the shape of the underlying distribution of the population,  by increasing the 
sample size, sample means & proportions will approximate normal distributions if the sample 
sizes are sufficiently large.



4.  Assumptions  &  Importance  of 
CLT
Statement of Central Limit Theorem
Suppose  X one  ,X two, etc X n,  be n independent  random variables having the same 
probability density function each with Expected value of Xi is equal to mu  and Variance of Xi 
is equal to sigma square , for I equal to one, two , etc. till n  then Sn  is equal to  X one plus X 
two plus etc  till plus X n is approximately Normal with mean n mu  and variance n sigma 
square.
Also, Z is equal to x bar minus n mu by sigma into root n is asymptotically Normal with mean 
zero and variance one.

General assumptions of Central Limit Theorem
1)The variables are independent
2) All the variables follow same distribution
3) The mean and variance of all the variables exists
4) The mean and variance of all the variables are same
5) Number of variables are very large ( that is n tends to infinity)

The approximations can be garnered from the Central Limit Theorem and can be listed as a 
corollary
Corollary:
If X one, X two, etc till  Xn, are  independent identically distributed Random variables  with 
common mean  mu  and variance  sigma square then,

Probability of ‘a’ less than x bar minus mu by sigma by root ‘n’ less than ‘b’ is equal to Phi of 
‘b’ minus Phi of ‘a’
This equation gives an approximate value of the probabilities of certain events described in 
terms of averages and sums. 

Importance of Central Limit Theorem
The practical utility of the Central Limit Theorem is inherent in its approximation.
The  important  contribution  of  Central  Limit  Theorem  is  in  Statistical  Inference.  Many 
estimations  that  are  used  to  make  inferences  about  population  parameters  are  sums  or 
averages of the sample measurements. When the sample size is sufficiently large, you can 
expect these estimators to have sampling distribution that are approximately Normal. 

You can then use the Normal distribution to describe the behaviour of these estimators in 
repeated sampling and evaluate the probability of observing certain sample results. These 
probabilities are calculated using the Standard Normal Random Variable
Z is equal to  Estimator  minus  mean  by Standard Deviation

The CLT plays an important role in Statistical Theory. It is one of the usual assumptions in 
Statistics to assume that the underlying observations to follow Normal distribution, at least, 
approximately. The theory of error used by physicists, or astronomers can be justified on the 



basis of Central Limit Theorem. Thus investigating the most   general set of conditions under 
which the Central Limit Theorem can hold is of theoretical and practical interest.

The significance of the central limit theorem lies in the fact that it permits us to use sample 
estimators  to  make  inference  about  the  population  parameters  without  knowing  anything 
about the shape of the frequency distribution of that population other than what we can get 
from the sample.

Similarities and dissimilarities between Central Limit Theorem and Normal Theorem
Normal Theorem

• Population Mean equal to mu ,Standard Deviation equal to sigma

• Shape of the population is known to be a Normal curve( mu, sigma square )

• Sample average  x bar  is said to have Normal ( mu, sigma square by n )   for any n 

• Central Limit Theorem

• Population Mean equal to mu, Standard deviation equal to sigma

• Shape of the population is either unknown or not Normal

• Sample  average   x  bar   is  said  to  have  Normal  (  mu,  sigma  square  by  n ) 
approximately for only large  n



5. Check for Normality
CHECK FOR NORMALITY:

• Use descriptive statistics. 

• Construct stem-and-leaf plots for small or moderate-sized data sets and frequency 
distributions and histograms for large data sets.

• Compute measures of central tendency (mean and median) and compare with the 
theoretical and practical properties of the normal distribution. 

• Compute the inter quartile range. Does it approximate the one point three three 
times the standard deviation?

• How are the observations in the data set distributed? 

• Do approximately two thirds of the observations lie between the mean and plus or 
minus one standard deviation?

•  Do approximately four-fifths of the observations lie between the mean and plus or 
minus one point two eight standard deviations? 

• Do approximately nineteen out of every twenty observations lie between the mean 
and plus or minus 2 standard deviations?

Why do I care if X bar, the sample mean, is normally distributed?
Because I want to use Z scores to analyze sample means. 
But to use Z scores, the data must be normally distributed.
That’s where the Central Limit Theorem steps in.

Recall  that  the Central  Limit  Theorem states that  sample  means are  normally distributed 
regardless of the shape of the underlying population if the sample size is sufficiently large. 

• Z is equal to X minus mu by sigma

• If  sample means are normally distributed, the Z score formula applied to sample 
means would be:

Z  is equal to  [X-bar  minus   mu X-bar ] by   sigma  X-bar

Background
To determine mu X-bar, we would need to randomly draw out all  possible samples of the 
given size from the population, compute the sample means, and average them. This task is 
unrealistic. Fortunately, mu X bar equals the population mean mu, which is easier to access.

Likewise,  while  computing the value of  sigma X-bar,  we  would  have to take all  possible 
samples of a given size from a population, compute the sample means, and determine the 
standard deviation of sample means. This task is also unrealistic. Fortunately, sigma X bar 
can be computed by using the population standard deviation divided by the square root of the 
sample size.

Note:
As the sample size increases, the standard deviation of the sample means becomes smaller 
and smaller because the population standard deviation is being divided by larger and larger 
values of the square root of n.



The ultimate benefit of the central limit theorem is a useful version of the Z formula for sample 
means.  Z  formula  for  sample  means  is  given  by:
Z = [X bar  minus  mu ]  by sigma by root n

Example :
The mean expenditure per customer at a tire store is d eighty five dollars, with a standard 
deviation  of  nine  dollars.  If  a  random  sample  of  forty  customers  is  taken,  what  is  the 
probability that the sample average expenditure per customer for this sample will be eighty 
seven dollars or more?

Because the sample size is greater than thirty, the central  limit  theorem says the sample 
means are normally distributed. 
Z  is equal to  [X bar  minus  mu ] by sigma by root n
Z  is equal to  eighty seven minus eighty five by  nine by root forty
Z is equal to two by  one point four two is equal to  one point four one
For Z is equal to one point four one in the Z distribution table, the probability is point four two 
zero seven. 

This  represents  the  probability  of  getting  a  mean between  eighty  seven  dollars  and  the 
population mean eighty five dollars. 
Solving for the tail of the distribution yields
Zero point five minus zero point four two zero seven is equal to zero point zero seven nine 
three.
This is the probability of X-bar greater than or equal to eighty seven dollars. 

Interpretations:
Therefore, seven point nine three percent  of the time, a random sample of  forty  customers 
from this population will yield a mean expenditure of  eighty seven dollars   or more or 

From any random sample of forty customers,  seven point  nine three percent of them will 
spend an average eighty seven dollars or more.

Here’s a summary of our learning in this session where we have :

• Understood the concept of  Central Limit Theorem

• Understood the  Assumptions and Implication of the theorem

• Explained the required sample size to follow the theorem

• Explained the importance of the theorem

• Understood the difference between Central Limit Theorem and Normal Theorem

• Understood the applications  of Central Limit Theorem


