
1. Introduction
Welcome to the series of E-learning modules on the concept of Weak Law of Large Numbers 
(Statement) with applications.  In this module, we are going to cover the  concept of  law of 
large numbers, statement of weak law of large numbers, difference between weak and strong 
law of large numbers, its applications and results associated with it.

By the end of this session, you will be able to: 

• Explain the law of large numbers

• Explain the statement of weak law of large numbers

• Explain the implications and applications of weak law of large numbers

• Explain the difference between weak and strong law of large numbers

In probability  theory,  the law  of  large  numbers is  a  theorem that  describes  the  result  of 
performing  the  same  experiment  a  large  number  of  times.  According  to  the  law, 
the average of  the  results  obtained  from  a  large  number  of  trials  should  be  close  to 
the expected value, and will tend to become closer as more trials are performed.

For example, a single roll of a six-sided dice produces one of the numbers from 1 to 6, each 
with equal probability. Therefore, the expected value of a single dice roll is 1 plus 2 plus etc 
plus 6 by 6 is equal to 3 point five.

According to the law of large numbers, if  a large number of six-sided dice are rolled, the 
average of their values (sometimes called the sample mean) is likely to be close to 3 point 5, 
with the accuracy increasing as more dice are rolled.
It follows from the law of large numbers that the empirical probability of success in a series 
of Bernoulli trials will converge to the theoretical probability. 

For a Bernoulli random variable, the expected value is the theoretical probability of success 
and  the  average  of n such  variables  (assuming  they  are independent  and  identically 
distributed) is precisely the relative frequency.

For  example,  tossing  of  a  coin is  a Bernoulli  trial.  When a  fair  coin  is  flipped  once,  the 
theoretical probability that the outcome will be heads is equal to half. Therefore, according to 
the law of large numbers, the proportion of heads in a "large" number of coin flips "should be" 
roughly  half.  In  particular,  the  proportion  of  heads after n flips  will almost converge to  half 
as n approaches infinity.

Though the proportion of heads (and tails) approaches half, almost the absolute (nominal) 
difference in the number of heads and tails will become large as the number of flips becomes 
large. That is, the probability that the absolute difference is a small number approaches zero 
as the number of flips becomes large. 

The Law of Large Number (LLN) is important because it "guarantees" stable long-term results 
for  random  events.  For  example,  while  a  casino  may  lose  money  in  a  single  spin  of 
the roulette wheel,  its  earnings  will  tend  towards  a  predictable  percentage  over  a  large 



number  of  spins.  Any  winning  streak  by  a  player  will  eventually  be  overcome  by  the 
parameters of the game.

It is important to remember that the LLN only applies (as the name indicates) when a large 
number of  observations  are  considered.  There  is  no  principle  that  a  small  number  of 
observations will converge to the expected value or that a streak of one value will immediately 
be "balanced" by the others.

Forms of Law of Large Numbers

Two  different  versions  of  the Law  of  Large  Numbers are  described,  which  are  called 
the Strong Law of Large Numbers, and the Weak Law of Large Numbers. Both versions of the 
law state that – with virtual certainty – the sample average   Xn bar converges to the expected 
value.

X n bar tends to mu for n tends to infinity 
Where, X 1, X2, etc. is an infinite sequence of independent and identically distributed random 
variables with expected value, Expected value of X1 is equal to Expected value of X2 etc. is 
equal to mu. Expected value of modulus of Xj is finite  for j  is equal to 1,2  etc
An assumption of finite variance V of X1 is equal to V of X2 etc equal to sigma square which 
is finite  is not necessary. Large or infinite variance will make the convergence slower, but the 
LLN holds anyway. This assumption is often used because it makes the proofs easier and 
shorter.

The difference between the strong and the weak version is  concerned with  the mode of 
convergence  being  asserted.  Already  we  are  familiar  with  two  types  of  convergence  of 
random  variables  and  its  interpretations  namely  Convergence  in  distribution  and 
Convergence in probability.



2. Weak Law of Large Numbers
A  theorem  of  importance  usually  known  as  Bernoulli’s  theorem  was  first  published 
posthumously  in  the  first  part  of  the  eighteenth  century.  French  mathematician  Simeon 
Poisson gave it the name “Law of Large Numbers”. According to Bernoulli, it took him twenty 
years to complete the theorem. 

Later Poisson proved an analogous theorem at the beginning of the nineteenth century under 
more  general  conditions.  The  Russian  mathematician Chebyshev  discovered  his  proof  in 
eighteen sixty-six using this inequality. Later Markov obtained a more general result  using 
Tchebyscheff’s reasoning. 
In Nineteen twenty eight, Khinchin showed that for a sequence of independent and identically 
distributed random variables the Law of Large numbers holds if the expectations exist. The 
above works were concerned with what is known as Weak Law of Large Numbers. 

If you toss a fair coin only twice, although "Heads" and "Tails" both have a probability of  point 
five, you certainly would not be too surprised if  the two tosses happened to produce both 
"Heads", or both "Tails", instead of producing exactly one "Head" and one "Tail".
However, if  you now toss the same fair coin one thousand times, you certainly expect the 
number of "Heads" to be very close to five hundred.

The  Weak  Law  of  Large  Numbers  backs  this  intuition.  This  Law  states  that  if  a  trial is 
reproduced a  large  number  of  times n,  then  it  becomes exceedingly  improbable  that  the 
average of the outcomes of these n trials will differ significantly from the expected value of 
one  outcome as n grows  without  limit.

In more technical terms, the Weak Law of Large Numbers states that:

Suppose  {Xi}  is  an  infinite  sequence  of  independent  and  identically  distributed  random 
variables with common mean mu and if  we define Yn as the random variable equal to the 
mean of the first n, Xis, then for any epsilon, the probability for a realization of Yn to fall more 
than epsilon away from mu tends to 0 as n grows without limit. 

No matter how small the epsilon is, all we have to do is to find the probability for the mean of 
the first n terms to differ it from the mean mu to keep it more than the epsilon but as small as 
you wish, so that we can make n large enough.
In  the  vocabulary  of  Estimation,  the  WLLN  states  that  the  sample  mean  is 
a consistent estimator of the population mean.



3.  Tchebyscheff’s  Theorem  of 
WLLN
Let {Xn} be a sequence of independent random variables such that Expected value of Xi is 
equal to mu i and variance of Xi is equal to sigma i square. 
Let  Bn is equal to Variance of (X1 plus X2 plus up to plus Xn) is finite. 
Then, 
Probability of modulus of (X1 plus X2 plus up to plus Xn by n minus mu 1 plus mu 2 plus up to 
plus mu n by n) less than epsilon is greater than or equal to 1 minus eta for all n greater than 
n  not  ,  where   epsilon  and  eta   are  arbitrary  small  positive  numbers  provided  Limit  of 
summation sigma i square by n square as n tends to infinity  is equal to limit of Bn by n 
square as n tends to infinity is equal to 0. 

Assumed arithmetic mean of the expectations should be less than any given number however 
small it may be, provided the condition that number of variables  can be taken sufficiently 
large  and  Limit of Bn by n square as n tends to infinity  equal to 0  are  fulfilled.

Remark: 
1)WLLN can also be stated as follows: 
Xn bar converges to mu bar in probability provided Bn by n square tends to zero as n tends to 
infinity, symbols having their usual meanings. 
2)  For the existence of the law, we assume the following conditions: 
   i) Expected value of Xi  exists for all i 
   ii)  Bn is equal to Variance of (X1 plus X2 plus up to plus Xn) exists  and 
   iii) Bn by n square tends to zero as n tends to infinity 

Condition (i) is necessary, without which the law cannot be stated. The conditions (ii) and (iii) 
need not be necessary. However, condition (iii) is a sufficient condition to prove the Weak Law 
of Law Numbers.

3) Corollary:
If the variables X1, X2, up to Xn are independently and identically distributed, then Expected 
value of Xi is equal mu and Variance of Xi is equal sigma square. Bn is equal to n sigma 
square. 
Bn by n square is equal to n sigma square by n square tends to zero as n tends to infinity, 
If sigma i square is equal to sigma square, then the condition of the theorem is automatically 
satisfied and we have the result Xn bar minus mu tends to zero in probability. Further, if the 
random variables {Xi} are independent and identically distributed with Expected value of Xi is 
equal to mu and Variance of Xi is equal to sigma square then, 
Xn bar converges to mu in probability that is the sample mean converges stochastically to the 
population mean. 

The standard terminology of Calculus would reformulate the Law as follows:

• No matter how small epsilon greater than 0,

• No matter how small  delta  greater than 0,



• There is a number N of  (epsilon,  delta) such that  if n is  greater than N of  (epsilon, 
delta) then,
Probability of (modulus of (X1 plus X2 plus up to Xn  by n minus mu) greater than epsilon is 
less than delta 

Hence, the weak law of large numbers makes use of convergence in Probability and it states 
that the sample average converges in probability towards the expected value,
Xn bar converges in probability to mu, when n tends to infinity
That is to say that for any positive number epsilon,
Limit as n tends to infinity of Probability of (modulus of (Xn bar minus mu) greater than epsilon 
is equal to zero. 

Interpreting this result, the weak law essentially states that for any non-zero margin specified, 
no matter how small, with a sufficiently large sample, there will be a very high probability that 
the average of the observations will be close to the expected value, that is, within the margin.
Convergence in probability is also called weak convergence of random variables. This version 
is called the weak law because random variables may converge weakly (in probability) as 
above without converging strongly as in the case of Strong Law of Large Numbers.

Graphic interpretation of the Weak Law of Large Numbers

Figure 1

The WLLN receives a simple graphic interpretation. For each value of n, the random variable, 
Yn has a probability distribution (that we here assume to be continuous) which is represented 
by the green curve as shown in the slide. The area under the curve is always 1.

Now, at a position 2 Epsilon long segment s on top of mu, denote An the area under the curve 
outside s.
An is the probability for Yn to be different from mu by more than epsilon (in absolute value).
The WLLN states that for a given epsilon, An tends to 0 as N grows without  limit.  In other 
words,  outside of s,  the  "tails"  of  the distribution of Yn become negligible  when n tends  to 
infinity.



4. Differences Between the Weak 
Law and the Strong Law
The weak law states that for a specified large n, the average Xn bar is likely to be near mu. 
Thus,  it  leaves  open  the  possibility  that modulus  of  (Xn  bar  minus  mu)  is  greater  than 
epsilon happens an infinite number of times, although at infrequent intervals.

The strong  law shows  that  this strongly will  not  occur.  In  particular,  it  implies  that  with 
probability 1, we have for any epsilon greater than 0 the inequality modulus of (Xn bar minus 
mu) less than epsilon holds for all large enough n.
The proof of the Weak Law is easy when the Xi’s have a finite variance. It is most often based 
on Chebyshev’s Inequality.

The Laws of Large Numbers make statements about the convergence of Xn bar   to mu. Both 
laws relate bounds on sample size, accuracy of approximation, and degree of condense. The 
Weak Laws deal  with  limits  of  probabilities  involving Xn  bar.  The Strong Laws deal  with 
probabilities involving limits of Xn bar. 



5.  Application  and  Limitation  of 
Weak Law of  Large Numbers
Application of Weak Law of  Large Numbers
The coin-tossing paradigm is convenient example for the application of WLLN.
Consider a fair coin and for a given n, the set of all the possible outcomes of a sequence 
of n tosses of this coin. There are exactly 2 to the power n such sequences, and because of 
the fairness of the coin, they all have the same probability 2 to the power minus n of occurring 
when an actual series of n tosses is performed.

Suppose these sequences are numbered 1, 2, up to 2 to the power n, in an arbitrary way. For 
sequence Number i, denote mu i the average number of Heads per toss in the sequence Mu i 
is equal to 1 by n. 

Number of Heads in the sequence take an arbitrary small positive real number epsilon, and 
count the number of sequences such that mu i departs from half by more than epsilon. 

Observe that the proportion of these "deviant" sequences tends to 0 as n grows without limit. 
Therefore, the WLLN can easily be derived directly in the case of a fair coin tossing. 

The interesting things about this derivation are:

• The concept of probability appears only when we state that all possible n-sequences of 
outcomes  have  the same probability  2  to  the  power  minus  n.  The  rest  is  just 
combinatory  (as  when  we  derived  the  probability  mass  function  of 
the Binomial distribution). 

• We never consider  infinite  sequences  of  tosses.  The WLLN simply  says  that  for  a 
given epsilon,  for any n larger than a certain n of epsilon,  the proportion of  deviant 
sequences in the (finite) set of (finite length) n-sequences is smaller than epsilon.

WLLN tells us that that ultimately, the numbers of Heads and Tails must be about equal. After 
this incredibly unlucky opening sequence, the following tosses must therefore produce mostly 
Tails for the game to return to a roughly balanced count of Heads and Tails. Hence, we are 
expecting the following tosses to generate mostly Tails.
In other words, an excess of Heads in an opening sequence must cause an increase of the 
probability of Tails for the ensuing tosses.

How could the balance be attained otherwise?

Of  course,  because  the  tosses  are  independent,  there  is  no  such  thing  as  "probability 
adjustment".  The  WLLN  does  not  care  whether  an  opening  sequence,  however  long, is 
balanced or not. All it says is that all you have to do is toss the coin long enough to increase 
the probability for the sequence to be just about balanced, but it says nothing about how long 
you have to wait for this to happen. Many gamblers went to their ruin for misinterpreting the 
WLLN.



Limitations of the Weak Law of Large Numbers
Mean and variance
The above expressions make an explicit reference to the common mean mu of the variables.
In  addition,  the  WLLN will  appear  to  be a  consequence  of  Chebyshev  inequality,  which 
requires the variables to have a variance.
Therefore,  the  WLLN seems to  apply  only  to  variables  that  have  at  least  a  mean and a 
variance. In fact, the existence of the variance is not required.

The existence of the mean is of course always required. Therefore, for example, the WLLN 
does not apply to samples drawn from the Cauchy distribution,  as this distribution has no 
mean. We already noticed that the distribution of the mean of a sample drawn from a Cauchy 
distribution does not depend on the sample size. Therefore, there is no "shrinking" of this 
distribution as the sample size increases.

Independence
We stated that the WLLN applies to independent or independent and identically distributed 
random variables. Assuming the independence of variables is so common in Statistics that we 
sometimes forget how strong a restriction this is.
There is some counter-example that deals with variables that are indeed identically distributed 
but  that  are not  independent.  A  consequence  of  the  breakdown  of  the  independence 
hypothesis will be that the WLLN does not apply to this sequence of variables. It expects the 
variables to be at least independently distributed.

Why this Law is considered "weak”?
The term "Weak" refers to the way the sample mean converges to the distribution mean. At 
first  sight,  it  may  seem  that  there  is  no  better  way  to  converge  than  “convergence  in 
probability".
However, it turns out that the sample mean converges to the distribution mean in a much 
"stronger" way than just "in probability”. This convergence is almost sure, and the Weak Law 
of Large Numbers is in fact superseded by a "Strong" Law of Large Numbers.

Here’s a summary of our learning in this session, where we understood:

• The concept of Law of Large Numbers

• The statement of Weak Law of Large Numbers

• The applications and implications of  Weak Law of Large Numbers

• The difference between Weak and Strong Law of Large Numbers


