
1. Introduction 

  
Welcome to the series of E-learning modules on the concept of convergence in distribution 
and in probability. In this module, we are going to cover the concept of convergence in 
distribution and in probability, definition, properties, applications and relationship between 
convergence in distribution and convergence in probability. 
 
By the end of this session, you will be able to:  
  

• Explain the convergence in distribution 

• Explain the examples and properties of convergence in distribution 

• Explain convergence in probability 

• Explain the examples and properties of convergence in probability 

• Explain the relationship  between convergence in distribution and convergence in 
probability 

 
In probability theory, there exist several different notions of convergence of random variables. 
An important concept in probability theory is the convergence of sequences of random 
variables to some limit random variable. It has a vital role to play in statistics and in stochastic 
processes.  
 
The same concepts are known in more general mathematics as stochastic convergence. 
They formalize the idea that a sequence of essentially random or unpredictable events can 
sometimes be expected to settle into a behaviour that is essentially unchanging when items 
far enough into the sequence are studied. 
 
The different possible notions of convergence relate to how such behaviour can be 
characterised. Two readily understood behaviours are that the sequence eventually takes a 
constant value and that value in the sequence continues to change. However, it can be 
described by an unchanging probability distribution. 

 
 
 
 
 
 



2. Convergence in Distribution 

 
Definition 
A sequence {X1, X2,  etc} of random variables is said to converge in distribution, or converge 
weakly, or converge in law to a random variable X if , limit of Fn of x as n tends to infinity is 
equal to F of x 
For every number x in R at which F is continuous. Here Fn and F are the cumulative 
distribution functions of random variables Xn and X correspondingly. 
 
The requirement that only the continuity points of F should be considered is essential. An 
example given below explains why we require the distribution functions that converge only at 
continuity points for the limiting distribution function. 
 
For example: 
If Xn are distributed uniformly in intervals [0, 1 by n], then this sequence converges in 
distribution to a degenerate random variable X is equal to 0. Indeed, Fn of  x is equal to  0 for 
all n when x  less than or equal to  0, and Fn(x)  is equal to  1 for all x greater than or equal to 
1 by n  when n  is greater than zero . 
 
However, for this limiting random variable 
F of zero is equal to 1, even though Fn of zero is equal to zero for all n. Thus, the 
convergence of cumulative distribution functions fails at the point x equal to 0, where F is 
discontinuous. 
Convergence in distribution may be denoted as 
Xn tends to X with small letter d or Xn tends to X with capital letter D or Xn tends to X with 
capital  letter L 
For example, if X is standard normal we can write, Xn tends to Normal with mean zero and 
variance 1 in distribution  
It should be clear what we mean by Xn tends to X in distribution  
 
The random variables Xn converge in distribution to a random variable X having distribution 
function F. Similarly, we have  Fn tends to F in distribution if there is a sequence of random 
variables {Xn}, where Xn has distribution function Fn, and a random variable X having 
distribution function F, so that  
 Xn tends to X in distribution  
 
The first obvious fact to notice is that convergence in distribution only involves the 
distributions of the random variables. Thus, the random variables need not even be defined 
on the same probability space (that is, they need not be defined for the same random 
experiment). This is in sharp contrast to the other modes of convergence: 

• Convergence with probability 1 

• Convergence in probability 

• Convergence in kth mean 
 
However, we cannot deny the fact that convergence in distribution is the weakest of all of 
these modes of convergence. It is nonetheless very important. The central limit theorem is 
one of the two fundamental theorems of probability, which is a theorem about convergence in 



distribution. 
 
The definition of convergence in distribution may be extended from random vectors to more 
complex random elements in arbitrary metric spaces, and even to the “random variables”, 
which are not measurable - a situation which occurs for example in the study of empirical 
processes. This is the “weak convergence of laws without laws being defined” - except 
asymptotically.  
  
In this case, the term weak convergence is preferable and we say that a sequence of random 
elements {Xn} converges weakly to X if 
Outer Expected value of h of Xn tends to Expected value of h of x for all continuous bounded 
functions h dot. Here E star denotes the outer expectation, which is the expectation of a 
“smallest measurable function g that dominates h of (Xn)”. 
 
Properties 

• Since F of a is equal to Probability of X less than or equal to a, the convergence in 
distribution means that the probability for Xn to be in a given range is approximately 
equal to the probability that the value of  X is in that range, provided n is sufficiently 
large 

• In general, convergence in distribution does not imply that the sequence of 
corresponding probability density functions will also converge 

• As an example one may consider random variables with densities, ƒn of x is equal to (1 
minus cos of (2 into phi into n into x). These random variables converge in distribution 
to a uniform with limits 0 to 1, whereas their densities do not converge at all. 

• Portmanteau lemma provides several equivalent definitions of convergence in 
distribution. Although these definitions are less intuitive, they are used to prove a 
number of statistical theorems 

• Continuous mapping theorem states that for a continuous function g of dot , if the 
sequence {Xn} converges in distribution to X, then so does {g of (Xn)} converge in 
distribution to g of X 

• Levy’s continuity theorem: the sequence {Xn} converges in distribution to X if and only 
if the sequence of corresponding characteristic functions  Phi n converges point wise to 
the characteristic function  Phi  of X 

• Convergence in distribution is metrizable by the Levy–Prokhorov metric 

• A natural link to convergence in distribution is the Skorokhod's representation theorem 
 
Example:                                                                 
1)   Dice Factory 
Suppose a new dice factory has just been built. The first few dice come out quite biased due 
to imperfections in the production process. The outcome from tossing any of them will follow a 

distribution marked different from the desired uniform distribution. 
As the factory is improved, the dice become less and less loaded, and the outcomes from 
tossing a newly produced dice will follow the uniform distribution more and more closely. 

 
2) Tossing coins 
Let Xn be the fraction of heads after tossing up an unbiased coin n times. Then, X1 has 
the Bernoulli distribution with expected value mu is equal to point five and variance  sigma 
square is equal to zero point two five. The subsequent random variables X2, X3, etc will all be 



distributed Binomially. 
 
As n grows larger, this distribution will gradually start to take shape more and more similar to 

the bell curve of the normal distribution. If we shift and rescale Xn appropriately, then Zn is 
equal to root n into (Xn bar minus mu by sigma) will be converging in distribution to the 

standard normal, the result that follows from the celebrated central limit theorem. 

 
Convergence in distribution is the weakest form of convergence, since it is implied by all other 
types of convergence. However, convergence in distribution is very frequently used in 
practice. Most often, it arises from application of the central limit theorem. With this mode of 
convergence, we increasingly expect to see the next outcome in a sequence of random 
experiments becoming better and better modelled by a given probability distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 



3. Convergence in Probability 

 
Among several deferent modes of convergence, convergence in probability is one of them. 
Here, we consider sequences X1, X2, etc of random variables instead of real numbers. As 
with real numbers, we would like to have an idea of what it means to converge. 
 
In general, convergence will be to some limiting random variable. However, this random 
variable might be a constant, so it also makes sense to talk about convergence to a real 
number.  
The concept of convergence in probability is based on the following intuition: Two random 
variables are "close to each other" if there is a high probability that their difference is very 
small.  
 
The basic idea behind this type of convergence is that the probability of an “unusual” outcome 
becomes smaller and smaller as the sequence progresses. The concept of convergence in 
probability is used very often in statistics. For example, an estimator is called consistent if it 
converges in probability to the quantity being estimated. Convergence in probability is also 
the type of convergence established by the weak law of large numbers. 
 
Let Xn be a sequence of random variables defined on a sample space. Let X be a random 
variable and epsilon a strictly positive number. In other words, the probability of Xn being far 
from X should go to zero when n increases. Formally, we should have limit of n tends to 
infinity Probability of modulus of Xn minus X greater than epsilon is equal to zero 
(Note that Xn is a sequence of real numbers, therefore the above limit is the usual limit of a 
sequence of real numbers). 
 
Furthermore, the condition limit of n tends to infinity Probability of modulus of Xn minus X 
greater than epsilon is equal to zero  should be satisfied for any  variable (also for very small, 
which means that we are very restrictive on our criterion for deciding whether Xn is far from 
X). This leads us to the following definition of convergence: 
 
Definition 
A sequence {Xn} of random variables converges in probability towards X if for all epsilon 
greater than zero 
limit of n tends to infinity Probability of modulus of Xn minus X greater than epsilon is equal to 
zero 
Formally, pick any epsilon greater than zero and any delta greater than zero. Let P be the 
probability that Xn is outside the ball of radius epsilon centred at X. Then, for Xn to converge 
in probability to X there should exist a number N delta such that for all n greater than or equal 
to N delta the probability P is less than delta. 
 
Convergence in probability is denoted by adding the letter p over an arrow indicating 
convergence, or using the “plim” probability limit operator as follows:  
Xn tends to X with a small letter p or capital P over an arrow or plim as n tends to infinity Xn is 
equal to X. 



 
Properties 

• Convergence in probability implies convergence in distribution  

• Convergence in probability does not imply almost sure convergence  

• In the opposite direction, convergence in distribution implies convergence in 
probability only when the limiting random variable X is a constant  

• The continuous mapping theorem states that for every continuous function g of dot, 
if Xn converges to X on probability, then g of Xn converges to g of X in probability  

• Convergence in probability defines a topology on the space of random variables 
over a fixed probability space  

 
Example: 
Height of a person 
Consider the following experiment. First, pick a random person in the street. Let X be his/her 
height, which is Xn, a random variable. Then, you start asking other people to estimate this 
height by eye. Let Xn be the average of the first n responses. Then (provided there is 

no systematic error), by the law of large numbers, the sequence Xn will converge in 
probability to the random variable X. 

 
Archer: 
A person takes a bow and starts shooting arrows at a target. Let Xn be his score in nth shot. 
Initially, he will be very likely to score zeros, but as the time goes and his archery skill 
increases, he will become more and more likely to hit the bullseye and scores a maximum of 
10 points.  
 
After the years of practice, the probability that he scores anything but 10 will be getting 
increasingly smaller and smaller. Thus, the sequence Xn converges in probability to X is 
equal to 10. Note that Xn roughly does not converge. However, no matter how professional 
the archer becomes, there will always be a small probability of making an error. Thus, the 
sequence {Xn} will never turn stationary. There will always be non-perfect scores at a lesser 
frequency.  

 
 
 
 
 
 



4. Relationship between 
Convergence in Probability and 
Convergence in Distribution  

 
Result 1:  
Suppose that Xn, n is equal to 1, 2, etc and X are random variables (defined on the same 
probability space) with distribution functions Fn, n is equal to 1, 2, etc. and F, respectively.  
If Xn converges to X as n tends to infinity in probability then the distribution of Xn converges 
to the distribution of X as as  n tends to infinity. That is, if Xn converges to X in probability 
then, Xn converges to X in distribution 
 
Proof 
Probability of Xn less than or equal to t is equal to Probability of Xn less than or equal to t 
intersection  Probability of  modulus of Xn  minus X less than or equal to e plus Probability of 
Xn less than or equal to t intersection  Probability of  modulus of Xn  minus X  greater  than  e  
Less than or equal to Probability of X less than or equal to t plus e plus Probability of  
modulus of Xn  minus X  greater  than  e  
First, pick e small enough so that  
Probability of X less than or equal to t plus e less than or equal to Probability of X less than or 
equal to t plus eta  by 2.  
(Since F is right continuous.)  
Then, pick n large enough so that Probability of  modulus of Xn  minus X  greater  than  e  is 
less than eta by 2  
 
Then, for n large enough, we have  
Probability of (Xn less than or equal to t) is less than or equal to Probability of ( X less than or 
equal to t plus e)plus Probability of (modulus of Xn minus X  greater  than e) implies Fn of t 
less than or equal to Probability of (X  less than or equal to t) plus eta by 2 plus eta by 2  
Which is equal to F of t plus eta  
Therefore, Fn of t is less than or equal to F of t plus eta  
Similarly, for n large enough, if F is continuous at t, we have  
Fn of t is greater than or equal to F of t minus eta.  This shows that  
Limit of n tends to infinity Fn of t is equal to F of t at continuity points of F. However, the 
converse is not true.  
 
Result 2: 
Suppose that Xn converges to C in distribution then, Xn converges to C in probability where, 
C is a constant.  
Thus, when the limit is a constant, convergence in probability and convergence in distribution 
are equivalent.  

 



5. Applications of Limits 

 
There are several important cases where a special distribution converges to another special 
distribution as a parameter approaches a limiting value. Indeed, such convergence results are 
part of the reason why such distributions are special in the first place. For example: 
•       Convergence of the Hypergeometric Distribution to the Binomial  
•       Convergence of the Binomial Distribution to the Poisson  
In case of Sequences of Random Variables: 
•          Limit Theorems can be used to obtain properties of estimators as the sample sizes 
tend to infinity 

o Convergence in Probability – Limit of an estimator 
o Convergence in Distribution – Limit of a Cumulative distribution function 

•          Central Limit Theorem - Large Sample Distribution of the Sample Mean of a Random 
Sample 
•          Weak Law of Large Numbers (WLLN): Let X1, up to Xn be iid random variables with  
Expected value of Xi is equal to mu  and  variance of Xi is equal to sigma square is less than 
infinity. Then, the sample mean converges in probability to  mu 
 
To summarize, we have the following implications for the various modes of convergence and 
no other implications hold in general. 

• Convergence with probability 1 implies convergence in probability 

• Convergence in mean implies convergence in probability 

• Convergence in probability implies convergence in distribution 
 
It follows that convergence with probability 1, convergence in probability, and convergence in 
mean all imply convergence in distribution, so the latter mode of convergence is indeed the 
weakest. However, convergence in probability and convergence in distribution are equivalent 
when the limiting variable is a constant. Of course, a constant can be viewed as a random 
variable defined on any probability space.  
 
Here’s a summary of our learning in this session, where we understood: 

• The concept of  convergence in distribution 

• The properties and examples for convergence in distribution 

• The concept of  convergence in probability 

• The properties and examples for convergence in probability 

• The applications  of these modes of convergence 

• The relationship between  convergence in distribution and convergence in probability 


