Summary

- A confidence interval for variance gives an estimated range of values which is likely to include an unknown population variance, the estimated range being calculated from a given set of sample data
- The confidence level is the probability value (1 α) associated with a confidence interval which is often expressed as a percentage
- 100 (1- $\alpha)$ % C.I for the population variance σ^2 when the mean is known as μ is given by
 - $[\Sigma(yi-\mu)^2 / B, \Sigma(yi-\mu)^2 / A]$ where $B = \chi^2_{\alpha/2}(n)$ and • $A = \chi^2_{(1-\alpha/2)}(n)$
- 100 (1- $\alpha)$ % C.I for the population variance σ^2 when the mean is unknown is given by

•
$$[\Sigma(yi-\overline{y})^2/B$$
, $\Sigma(yi-\overline{y})^2/A]$ where $B = \chi^2_{\alpha/2}(n-1)$ and
• $A = \chi^2_{(1-\alpha/2)}(n-1)$

- 100 (1- α) % C.I for the ratio of variances of two populations with unknown means is given by

$$\begin{bmatrix} \frac{s_1^2}{Bs_2^2} & \frac{s_1^2}{As_2^2} \\ A = F_{(1-\alpha/2)}(m-1,n-1) \end{bmatrix}$$
 where $B = F_{\alpha/2}(m-1,n-1)$ and

• 100 (1- α) % confidence interval for the ratio of variances when the respective means are known is computed as

$$\begin{bmatrix} n \sum_{i=1}^{m} (x_i - \mu_1)^2 & n \sum_{i=1}^{m} (x_i - \mu_1)^2 \\ B m \sum_{i=1}^{n} (y_i - \mu_2)^2 & A m \sum_{i=1}^{n} (y_i - \mu_2)^2 \end{bmatrix} \text{ where } \mathsf{B} = F_{\alpha/2}(m,n) \text{ and } \mathsf{A} = F_{(1-\alpha/2)}(m,n) \ .$$