
1. Introduction
Welcome to the series of E-learning modules on Method of Maximum Likelihood and their 
properties. In this module, we are going to cover the basic principle of method of maximum 
likelihood, advantages and properties of  maximum likelihood estimators and estimation of 
certain population parameters by the method of maximum likelihood.

By the end of this session, you will be able to: 

• Explain the basic concept of method of maximum likelihood

• Explain the principle of the method and properties of likelihood estimators

• Explain the advantages and disadvantages  of the method of maximum likelihood

• Explain the procedure to estimate certain parameters of the population by the method 
of maximum likelihood

Selection of a random sample is very much essential for drawing valid inferences about the 
population. Methods that are developed for estimating the population parameters provide a 
theoretical basis of connection between sample information and population parameters, which 
assists  in  drawing  efficient  estimates  from  the  sample,  and  draw  inference  about  the 
population.

In  statistics, Maximum-Likelihood  Estimation (MLE)  is  a  method 
of estimating the parameters of  a statistical  model,  which  is  generally  used  in  estimation. 
When applied  to  a  data  set  and  given a statistical  model,  maximum-likelihood  estimation 
provides estimates for the model's parameters.

The method of maximum likelihood corresponds to many well-known estimation methods in 
statistics. For example, one may be interested in the intelligence of school going children. 
However, will be unable to measure the intelligence of every single child in a population due 
to cost or time constraints. 
Assuming that the intelligence is normally distributed with some unknown mean and variance, 
the mean and variance can be estimated with MLE while only knowing the intelligence of 
some sample of the overall population. 

MLE would  accomplish  this by taking the mean and variance as parameters  and finding 
particular parametric values that make the observed results the most probable.
In general, for a fixed set of data and underlying statistical model, the method of maximum 
likelihood selects values of the model parameters that produce a distribution that gives the 
observed data the greatest probability.



2.  Applications  of  the  Method  of 
Maximum Likelihood
Applications of the Method of Maximum Likelihood:
Maximum likelihood estimation is used for a wide range of statistical models, including:
Linear Models and generalized linear models
Exploratory and confirmatory factor analysis
Structural Equation Modelling
Many situations in the context of hypothesis testing and confidence interval formation

These uses arise across applications in widespread set of fields, including:

• Communication systems

• Psychometrics

• Econometrics

• Data modelling in nuclear and particle physics
• Magnetic resonance imaging

• Computational Phylogenetics

• Geographical satellite-image classification

On the other hand, MLE is not as widely recognized among modellers in psychology, but it is 
a  standard  approach  to  parameter  estimation and  inference  in  statistics.  MLE has  many 
optimal properties in estimation, such as sufficiency, consistency, efficiency etc. 

Further,  many  of  the  inference  methods  in  statistics  are  developed  based  on  MLE.  For 
example, MLE is a prerequisite for the chi-square test, the Gsquare test, Bayesian methods, 
inference with missing data, modelling of random effects, and many model selection criteria.

Once data has been collected and the likelihood function of a model is determined, we can 
make  statistical  inferences  about  the  population,  that  is,  the  probability  distribution  that 
underlies the data. Given the different parameter value index and probability distributions, we 
are  interested  in  finding  the  parameter  value  that  corresponds  to  the  desired  probability 
distribution. 

The principle of maximum likelihood estimation originally developed by R. A. Fisher in the 
nineteen twenty’s. It states that the desired probability distribution is the one that makes the 
observed data ‘‘most likely,’’ which means that one must seek the value of the parameter 
vector that maximizes the likelihood function. The resulting parameter vector, which is sought 
by searching the multi-dimensional parameter space, is called the MLE.



3. Likelihood Function
Likelihood Function:
A likelihood function of a number of sample observations is defined to be their joint density 
function. To use the method of maximum likelihood, we should first specify the joint density 
function for all observations. For an Independent and Identically Distributed (IID) sample, this 
joint density function is
f of (x one, x two, up to xn,theta) is equal to f of (x one, theta) into f of (x two, theta) into f of (x 
three, theta)  up to f of (xn, theta) 

Now,  we  look  at  this  function  from  a  different  perspective  by  considering  the  observed 
values x one, x two, upto xn to be fixed "parameters" of this function, whereas  theta will be 
the function's variable and allowed to vary freely. This function will be called the likelihood.

In case, the sample observations are independent, the likelihood function happens to be the 
product of the density functions of the random observations. If  x one, x two, up to xn  are 
n independent and identically  distributed observations, from a population with an unknown 
parameter theta   then the likelihood function of the random observations denoted by 
L is equal to L of (x one, x two, up to xn,theta)  is given by
L is equal to L of (x one, x two, up to xn,theta)  is equal to product of f of (xi,theta) 
Where, f of (xi, theta) is the p.d.f of the population.

L gives relative likelihood or chance that the random observations assume a particular set of 
values. For a particular sample (x one, x two, up to xn), L becomes a function of (x one, x two, 
up to xn) and an unknown parameter theta and p.d.f. f of (x, theta).  It is desirable to find an 
estimator theta  cap, which  would  be  closest  to  the  true  value theta.  Both  the  observed 
variables xi and the parameter theta can be vectors.

The method of maximum likelihood is the one in which for a given set of values x one, x two, 
up to xn, an estimator of theta is found that maximizes L. Thus, if there exists theta cap, a 
function of x one, x two, up to xn for which L is maximum for variations in theta. Then, theta 
cap is the M.L.E of theta if
Delta L by delta theta  is equal to zero and Delta  square L by delta theta   square is less than 
zero 

In practice, it is often more convenient to work with the logarithm of the likelihood function, 
called the log-likelihood.
Since logL attains maximum, when L attains maximum the solution of the equation.
Log L of (x one, x two, up to xn,theta)  is equal to summation log f of (xi, theta)
Delta log L by delta theta  is equal to zero and Delta  square  log L by delta theta square is 
less than zero also gives the M.L.E of θ
An MLE estimate is the same regardless of whether we maximize the likelihood or the log-
likelihood function, since log is a monotone transformation.



4.  Principle,  Properties  and 
Advantages  of  Maximum 
Likelihood Function
Principle:
The likelihood function L of (x one, x two, up to xn,theta) in a way gives the probability of the 
random sample x one, x two, up to xn,  when the parameter of the distribution is theta. For 
different values of theta, L gives the different probabilities. Since the event of getting a sample 
x one, x two, up to xn, has occurred, the probability of the event must be high or else the 
value of L should be large. 

So the value of theta, which gives the maximum probability for the sample is found and it is 
taken  as  the  maximum  likelihood  estimate  of  theta.  In  fact,  the  function  of  the  sample 
observations, which maximizes L, is determined and that is the MLE of theta.
For many models, a maximum likelihood estimator can be found as an explicit function of the 
observed data x one, x two, up to xn. For many other models, no closed-form solution to the 
maximization  problem  is  known  or  available  and  an  MLE  has  to  be  found  numerically 
using optimization methods. 

For some problems, there may be multiple estimates that maximize the likelihood. For other 
problems, no maximum likelihood estimate exists (meaning that the log-likelihood function 
increases without attaining the supremum value).
In  the  exposition  above,  it  is  assumed  that  the  data  are independent  and  identically 
distributed. The method can be applied however to a broader setting, as long as it is possible 
to write the joint density function ƒ of (x one, x two, up to xn, theta).

In a simpler extension, an allowance can be made for data heterogeneity, so that the joint 
density is equal to ƒ one of (x one,theta) into ƒ two of (x two,theta) up to ƒn of (x n,theta). In 
the more complicated case of time series models, the independence assumption may have to 
be dropped as well.

Properties
A maximum-likelihood  estimator  is  an extremum  estimator obtained  by  maximizing,  as  a 
function of theta.
Maximum-likelihood estimators have no optimum properties for finite samples. 
However, like other estimation methods, maximum-likelihood estimation possesses a number 
of attractive limiting properties.

As the sample-size increases to infinity, sequences of maximum-likelihood estimators have 
these properties:
Consistency:  A subsequence of the sequence of MLEs converges in probability to the value 
being estimated.
Asymptotic normality: As the sample size increases, the distribution of the MLE tends to the 
Gaussian distribution.



Efficiency: MLEs are  most  efficient  among the  class  of  all  consistent  estimators.  That  is 
among the class of consistent estimators MLE has the minimum variance. 
Sufficiency: Complete information about the parameter of interest is contained in its MLE.

Maximum-likelihood estimators can lack asymptotic normality and can be inconsistent if there 
is a failure of one (or more) of the below regularity conditions:
Estimate on boundary
Sometimes the maximum likelihood estimate  lies  on the boundary of  the set  of  possible 
parameters. Standard asymptotic theory needs the assumption that the true parameter value 
lies away from the boundary.

Data boundary parameter-dependent
For the theory to apply in a simple way, the set of data values, which has positive probability 
(or positive probability density), should not depend on the unknown parameter. 

A simple example where such parameter-dependence does hold is the case of estimating 
theta from a set of  IID variables is when the common distribution is uniform on the range 
(zero, theta). For estimation purposes, the relevant range of theta is such that theta cannot be 
less than the largest observation. Because the interval  (zero,  theta) is  not compact,  there 
exists no maximum for the likelihood function.

Nuisance parameters
For maximum likelihood estimations, a model may have a number of nuisance parameters. 
Increasing information
For the asymptotic to hold in cases where the assumption of IID observations does not hold, a 
basic requirement is that the amount of information in the data increases indefinitely as the 
sample size increases.  Either which may not be met because of too much dependence or 
new independent observations are subject to an increasing observation error.

Advantages:
i. The method has a good intuitive foundation. The underlying concept is that the best 
estimate  of  a  parameter  is  giving  the  highest  probability  that  the  observed  set  of 
measurements will be obtained.
ii. The least-squares method and various approaches for combining errors or calculating 
weighted  averages,  etc.  can  be  derived  or  justified  in  terms  of  the  maximum likelihood 
approach.
iii. The  method  is  of  sufficient  generality  that  most  problems  are  amenable  to  a 
straightforward application of  this method, even in cases where other techniques become 
difficult.  Inelegant  but  conceptually  simple  approaches  often provide  useful  results  where 
there is no easy alternative.



5. Illustrations
Illustrations:
For a random sampling from a normal population N (theta square), find the MLE for 

i. Theta when sigma square is known
ii. Sigma square  when  theta is known
iii. Theta and sigma square when both are unknown

Let  x one, x two, up to xn  be a random sample of size n drawn from a given population 
L is equal to L of (x one, x two, up to xn,theta)  is equal to product of f of (xi,theta) 
Which is equal to product of 1 by sigma into root 2 phi into exponential to the power (minus 1 
by 2 sigma square into (xi minus theta) whole square 
Which is equal to (1 by sigma into root 2 phi)  to the power n into exponential to the power 
(minus 1 by 2 sigma square summation (xi minus theta) whole square 

Ln L is equal to minus n by 2 into ln sigma square minus n into ln root 2 phi minus 1 by 2 
sigma square into summation (xi minus theta) whole square 
i) Maximum likelihood estimate of theta when sigma square is known 
delta ln L by delta theta is equal to zero implies summation (xi minus theta) by sigma square 
is equal to zero 
which implies summation xi minus n into theta is equal to zero, which implies theta cap is 
equal to summation xi by n which is equal to x bar
Therefore, MLE  of theta  θ is theta cap which is equal to summation xi by n which is equal to 
x bar with  delta square ln L by  delta theta square less than zero

ii) Maximum likelihood estimate of sigma square  when theta is known 
delta ln L by delta sigma square is equal to zero implies minus n by 2 sigma square plus 
summation (xi minus theta) whole square by 2 sigma to the power 4 is equal to zero implies 
minus n plus summation (xi minus theta) whole square by sigma square is equal to zero 
which implies sigma cap square is equal to summation (xi minus theta) whole square by n 
Therefore, MLE of  sigma square  when  theta  is known  as theta not is  sigma cap square 
which is equal to summation (xi minus theta not) whole square by n 

iii) Maximum likelihood estimate of  theta and sigma square  when  both are unknown 
Delta ln L by delta theta is equal to zero implies summation (xi minus theta) by sigma square 
is equal to zero implies theta cap is equal to summation xi by n which is x bar. Call this as 
equation 1 
delta ln L by delta sigma square is equal to zero implies  minus n plus summation (xi minus 
theta) whole square by sigma square is equal to zero 
implies  minus n plus summation (xi minus theta cap) whole square by sigma square is equal 
to  minus n plus summation (xi minus  x bar) whole square by sigma square which is equal to 
zero, from equation (1)
Which implies sigma cap square is equal to summation (xi minus x bar) whole square by n. 
Therefore,  MLE of  theta  is theta cap is equal to x bar  and the  MLE  of  sigma square  when 
theta  is unknown is  summation (xi minus x bar) whole square by n 

Where we compare the above example with the method of moments, we see that the method 



of moment estimators and the maximum likelihood estimators for theta and sigma square are 
the same. However, it happens rarely, if they are not the same.

Due to the fact that the maximum likelihood estimator of x bar  has an approximate normal 
distribution with mean  theta   and a variance sigma square by n that is equal to a certain 
lower  bound,  thus  at  least  approximately,  it  is  unbiased  minimum  variance  estimator. 
Accordingly,  most  statisticians  prefer  the  maximum  likelihood  estimators  than  estimators 
found using the method of moments.

2)Find the MLE of  theta  in the following uniform distribution  U of (0,theta ) 
Let  x one, x two, up to xn be a random sample of size n drawn from an uniform population 
with probability density function 
f of (x, theta)  is equal to 1 by theta, 0 less than x less than theta 
L is equal to L of (x one, x two,  up to  xn,theta)  is equal to product of f of (xi,theta) 
Is equal to (1 by theta) to the power n 
Log L  is equal to minus n into log theta 

Delta log L by delta theta equal to zero implies minus n by theta is equal to zero which implies 
theta cap is equal to infinity or n is equal to zero, which is meaningless. 
Hence, we use the basic principle of the maximum likelihood estimation, where the value of 
theta  for which L is maximum 
L is maximum when 1 by theta to the power n is maximum. That is when  theta to the power n 
is minimum, when theta is minimum 

But zero less than or equal to x  less than or equal to theta 
Implies, zero less than or equal to (x one) less than or equal to (x two) less than or equal to 
up to less than or equal to (xn) less than or equal to theta 
Where, (x one) (x two) up to (xn) are order statistics. 
Minimum value of  theta  is the maximum of the observations 
Therefore, MLE of theta  is theta cap is equal to xn, the maximum of the observations

Here’s a summary of our learning in this session, where we understood:

• The principle of  method of maximum likelihood estimation

• The applications  and advantages of the method 

• The properties of the maximum likelihood estimators

• The illustrative examples to obtain MLE


