
1. Introduction & Un-biasedness 
(Part-1) 
Welcome to the series of E-learning modules on Properties of Estimators – Unbiasedness, 
Relative Efficiency and Consistency. 

By the end of this session, you will be able to: 

• Explain the properties of estimators

• Explain unbiasedness, asymptotical unbiasedness and associated results

• Explain consistency, Properties and association with unbiasedness

• Explain efficiency and relative efficiency 

Many functions of sample observations may be proposed as the estimators of the same 
parameter. 
For example: Either mean or median or mode of the sample values may be used to estimate 
the parameter teeta of the normal distribution. Naturally, we have to choose one among the 
various  estimators on the basis of certain criteria.

Estimator  is  accepted  or  rejected  depending  on  its  sampling  properties.  Evidently  best 
estimator  would  be  the  one  that  falls  nearest  to  the  true  value  of  the  parameter  to  be 
estimated. 
In other words, a statistic whose distribution concentrates as closely as possible near the true 
value of the parameter may be regarded as the best estimator. We expect the estimator to 
have four desirable properties like consistency, unbiasedness, efficiency and sufficiency to be 
considered as the best estimator.

First let us see what we mean by Unbiasedness:
The expected value (mean) of the estimate's sampling distribution is equal to the underlying 
population parameter; that is, there is no upward or downward bias. 
Suppose Tn is an estimator of an unknown parameter teeta then, Tn is said to be unbiased 
for teeta if Expected value of Tn is equal to teeta

Tn is said to be asymptotically unbiased for  teeta if Expected value of Tn is equal to teeta as 
n tends to infinity
If Expected value of Tn is not equal to teeta then Tn is said to be biased for teeta. Bias in 
estimation is B of teeta is equal to Expected value of Tn minus  teeta

Let us see the result one.
The sample mean x bar is an unbiased estimator of the population mean θ 
Expected value of x bar is equal to teeta 

Now let us see the proof for result one.
Suppose x one, x two, upto, xn is a random sample of size n drawn from a population with 
mean teeta 
Then, the sample mean x bar  is equal to summation xi divided by n 



Now each of the sample members x one, x two, upto, xn behaves like a random variable 
because their values in any particular sample depend on chance. For instance, in Simple 
Random Sampling any of the population members x one, x two, upto, xn may appear at the 
ith drawing that is, xi is a random variable with the following probability distribution.

Xi takes the values X one, X two upto XN with respective probabilities 1 by N each.
Then we know that Expected value of Xi is equal to X one into 1 by N plus X two  into 1 by N 
plus upto X N into 1 by N plus which is equal to mean of population teeta
Hence, Expected value of sample mean x bar is equal to Expected value of (x one plus x two 
plus upto xn) by n
Which is equal to Expected value of  x one plus Expected value of x two plus upto  plus 
Expected value of  xn) by n
Which is equal to (teeta plus teeta plus upto teeta) by n which is equal to teeta
This shows that x bar is an unbiased estimator of teeta  

Let us see the result two.
The sample variance s square equal to summation (xi minus x bar) whole square by n is a 
biased estimator of the population variance  sigma square.  
 
Now let us see the proof for result two. 
Given s square equal to summation (xi minus x bar) whole square  by n
Also we know that summation (xi minus x bar) whole square by sigma square follows Chi-
square with (n minus 1) degrees of freedom
summation (xi minus x bar) whole square  by sigma square  is equal to n into s square by 
sigma square which follows Chi-square with ( n minus 1 ) degrees of freedom.

Then Expected value of n into s square by sigma square is equal to n minus 1 
Which implies Expected value of s square is equal to (n minus 1) into sigma square by n 
which is not equal to sigma square.
Hence, s square is biased for sigma square.



2. Un-biasedness (Part-2) 
Let us see the result three.
An unbiased estimator of the population variance  sigma square  is given by,  
s square is equal to summation (xi minus x bar) whole square by n minus 1

Now let us see the proof for result three. 
Let s square is equal to summation (xi minus x bar) whole square by n minus 1
Also we know that ,
Summation (xi minus x bar) whole square  by  sigma square follows Chi-square with (n minus 
1) degrees of freedom
Summation (xi minus x bar) whole square  by  sigma square  which is equal to( n minus 1) 
into s square by sigma square follows Chi-square with ( n minus 1 ) degrees of freedom.

Expected value of (n minus 1) into s square by sigma square is equal to n minus 1 
Which implies Expected value of s square is equal to ( n minus 1) into sigma square by (n 
minus 1)  which is  equal to sigma square

Hence,  s square  is an unbiased estimator of the population variance  sigma square 

Note the distinction between s2  of result 2 and result 3, in which only the denominators are 
different. s2  of result 2 is the variance of the sample observations but s2  of result 3 is the 
unbiased estimator of the variance σ2  in the population.

Let us see the result four.
Show that, generally an unbiased estimator does not possess the invariance property. 

Now let us see the proof for result four.

Suppose that Tn is an unbiased estimator of  teeta, then the Expected value of Tn is equal to 
teeta
Let g ( dot ) be any continuous function of teeta
If  Expected  value  of  g  of  Tn  is  equal  to  g  of  teeta  then  Tn  is  invariant  with  respect  to 
unbiasedness.

Let g of x is equal to x square then g of teeta is equal to teeta square and g of Tn is equal to 
Tn square 
Expected value of g of Tn is equal to Expected value of Tn square which is equal to Variance 
of Tn plus Expected value of Tn whole square
Which is equal to Variance of Tn plus teeta square which is equal to variance of Tn plus g of 
teeta
Therefore, Expected value of g of Tn is greater than g of teeta because Variance of Tn is 
greater than zero
Hence, Expected value of g of tn is not equal to g of teeta . Hence Tn does not possess an 
invariance property with respect to unbiasedness.



3.  Consistency  &  Properties  of 
Estimators (Part-1) 
Let us now see what we mean by Consistency.
A desirable  property  of  a  good  estimator  is  that  the  accuracy should  increase when  the 
sample size becomes larger. Larger sample sizes tend to produce more accurate estimates; 
that is, the sample estimator is expected to come closer to the population parameter as the 
size of the sample increases. 

Let us see the result five.

An estimator is said to be consistent if  the variance of its sampling distribution decreases 
with increasing sample size. 

This is a good property because it means that if you make the effort to collect data from a 
larger random sample, you should end up with a more accurate estimate of the population 
parameter.

Now let us see the proof for result five.

Suppose Tn  is an estimator of an unknown parameter teeta. Tn is said to be consistent for 
teeta if Tn converges to teeta in probability as n tends to infinity
That is Probability of modulus of Tn minus teeta less than epsilon tends to 1 as n tends to 
infinity
OR  Probability of modulus of Tn minus teeta  greater  than epsilon tends to zero as n tends 
to infinity
For epsilon greater than zero , yeeta greater than zero
Probability of modulus of Tn minus teeta less than epsilon greater than or equal to 1 minus 
yeeta as n tends to infinity.

Consistency is a limiting property. Moreover several consistent estimators may exist for the 
same parameter. For example, in sampling from a Normal population Normal (teeta, sigma 
square) both the sample mean and the median are the consistent estimators of the population 
mean teeta.

Let us see the result six.
Necessary and sufficient condition for consistency
Suppose Tn is unbiased for g of teeta and Variance of Tn tends to zero as n tends to infinity 
then Tn is consistent for g of teeta          OR
An estimator Tn is consistent estimator for g of teeta (a function of teeta) if Expected value of 
Tn is equal to g of teeta  and Variance of Tn tends to zero as n tends to infinity.

Now let us see the proof for result six.
Expected value of Tn  is equal to g of teeta  and Variance of  Tn tends to zero as n tends to 
infinity



Applying Tchebychev’s inequality
Probability of modulus of Tn minus  g of teeta less than epsilon greater than or equal to 1 
minus  variance of Tn by epsilon square 
Taking limit as n tends to infinity we get, 

Limit as n tends to infinity Probability of modulus of Tn minus g of teeta less than epsilon 
greater than or equal to 1 minus  limit as n ends to infinity variance of Tn by epsilon square 
which is equal to 1
Which implies Tn tends to g of teeta in probability as n tends to infinity
Therefore, Tn is consistent for g of teeta. 

Let us see the result seven.
Consistent Estimators need not be unbiased
Let s square is equal to summation ( xi minus x bar) whole square  by  n 
Also we know that, 
Summation (xi minus x bar) whole square  by sigma square follows Chi-square with (n minus 
1) degrees of freedom
Summation (xi minus x bar) whole square  by  sigma square  which is equal to n  into s 
square by sigma square follows Chi-square with ( n minus 1 ) degrees of freedom.

Now let us see the proof for result seven.
Expected value of n into s square by sigma square is equal to n minus 1 
And variance of  n into s square by sigma square is equal to  two into n minus 1 
implies Expected value of s square is equal to( n minus 1) into sigma square by (n)  which is 
not equal to sigma square
Hence,  s square  is biased for  sigma square.

But limit as n tends to infinity Expected value of s square is equal to sigma square
Variance of  n into s square by sigma square is equal to two into n minus 1 
implies variance of s square is equal to two into ( n minus 1) into sigma to the power four by n 
square which tends to zero as n tends to infinity
Hence, s square is equal to summation (xi minus x bar) whole square  by  n
is a consistent estimator but not an unbiased estimator of the population variance.



4.  Consistency  &  Properties  of 
Consistent Estimators (Part-2) 
Let us see the result Eight.
Unbiased estimators need not be consistent.
Now let us see the proof for result eight.
Consider x one, x two, upto x five  taken from a Normal population with mean  teeta and 
variance  sigma square
That is,  xi follows Normal with mean teeta and variance sigma square
Let x bar is equal to summation i runs from 1 to 5, xi by five then x bar follows Normal with 
mean teeta and variance sigma square by five.

Hence, Expected value of x bar is equal to teeta and variance of x bar is equal to sigma 
square by 5
That is, a sample mean is unbiased for the population mean  teeta

Now the variance of x bar is equal to sigma square by 5 which does not tend to zero as  n 

tends to infinity
Hence,  x bar is unbiased is not consistent for  teeta.

Let us see the result nine.

Consistent estimators possess invariance property.

Suppose Tn is a consistent estimator of  teeta and h of  teeta  is a continuous function of  
teeta  then h of Tn is consistent for h of teeta. 

Now let us see the proof for result eight.
Since, Tn is consistent for teeta then Tn convergers to teeta in probability as n tends to infinity
That is, for epsilon greater than zero , yeeta greater than zero
Probability of modulus of Tn minus teeta less than epsilon greater than or equal to 1 minus 
yeeta as n tends to infinity
Since, h( dot ) is a continuous function , for every  epsilon greater than zero  ,  however small 
there exists a positive number  epsilon one  such that 
Modulus of h of Tn minus  h of teeta less than epsilon one   whenever modulus of tn minus 
teeta is less than epsilon.

That is, modulus of tn minus teeta is less than epsilon implies Modulus of h of Tn minus h of 
teeta less than epsilon one.
  
For two events A and B 
If A implies B then A is the subset or equal to B which implies Probability of A less than or 
equal to Probability of B which implies P of B greater than or equal to P of A
Probability of modulus of h of Tn minus  h of teeta less than epsilon one    greater than or 
equal to  Probability of  modulus of tn minus teeta is less than epsilon



Probability of modulus of h of Tn minus  h of teeta less than epsilon one   is greater than or 
equal to 1 minus yeeta
Which implies h of Tn tends to h of teeta in probability as n tends to infinity
h of Tn is consistent for h of teeta 

Let us see the Properties of Consistent Estimators:
There are 5 properties of consistent estimators
1. For any distribution sample mean is the consistent estimator for the population mean
2. An consistent estimator need not be necessarily be unbiased
3. An unbiased estimators need not be consistent
4. A consistent estimator with finite mean is usually asymptotically unbiased
5. Consistent estimators have invariance property



5. Efficiency 
Let us see what we mean by Efficiency. 

It  is  possible  that  there  may  be  several  consistent  estimators  for  the  same  population 
parameter. 
For example, in case of Normal population sample mean and the sample median are both 
consistent estimators of  the population mean. Thus,  it  is necessary to have a criterion to 
decide a better estimator within the class of consistent estimators. 

While there are many consistent estimates of the same parameter, the most efficient has a 
sampling distribution with the smallest variance. Good estimate has smaller standard error 
than other estimates.
In order to make a choice among the consistent estimators, we have to introduce the idea of 
‘efficiency’. 

Of the two consistent estimators for the same parameters, the statistic with the small sample 
variance is said to be ‘more efficient ‘.  
Thus, if t and  t dash  are both consistent estimators of   teeta  and Variance of t is less than 
variance of t dash  then t is said to be more efficient than t dash  in estimating teeta. 

If  a  consistent  estimator  exists  whose  sampling  variance  is  less  than  that  of  any  other 
consistent  estimator,  it  is  said  to  be  most  efficient  and  it  provides  a  standard  for  the 
measurement of efficiency of a statistic.

Further a relative efficiency of T one  with respect to T two is defined as 
E of T one , T two is equal to Variance of T two  by variance of T one 
a)  If E of  T one,T two is equal to 1 then the both T one and T two  are equally  efficient 
b) If E of  T one , T  two  is greater than  1 then T one   is more efficient than T two
c) If E of  T one , T two is less  than  1 then T two   is more efficient than T one 

Let us see the result ten.

Show  that  while  sampling  from  a  Normal  population  sample  mean  is  more  efficient  in 
estimating population mean than sample median 

Now let us see the proof for result ten.

Given xi  follows Normal mue , sigma square
X bar follows Normal mue , sigma square by n
Sample median m follows Normal mue , 1 by 4 into ( n minus 1) into (f of mue) whole square
E of x bar equals to mue tends to mue as n tends to infinity
Variance of x bar equal to sigma square by n tends to zero as n tends to infinity
Hence x bar tends to mue in probability as n tends to infinity

Variance of m is equal to 1 by 4 into ( n minus 1) into (f of mue) whole square
Which is equal to 1 by 4 into ( n minus 1) into (1 by sigma into root 2 phi) whole square



Equals to  sigma square into 2 phi by 4 into ( n minus 1) tends to zero as n tends to infinity
Hence, m  tends to mue in probability as n tends to infinity
In sampling form a Normal population both the sample mean and sample median are the 
consistent estimators of the mean  mue
Variance of m  is equal to   sigma square into  phi by 2 into ( n minus 1)  approaximately equal 
to sigma square into  phi by 2 n  which is equal to phi by 2 into variance of x bar 
Which implies variance of m is greater than variance of x bar.

Since Variance of x bar is smaller than Variance of m, mean is more efficient than Median in 
estimating the population parameter mue.
Therefore, sample mean is more efficient than sample median

How well a specific estimator satisfies each of these criteria depends very much on the details 
of the population distribution. 

Thus, we may identify the “best estimator” as the one with:

• Least bias (unbiased)

• consistent

• Minimum variance of estimation error 

Here’s a summary of our learning in this session, where we understood:

• The required properties of  estimators 

• The unbiasedness , asymptotic unbiasedness and related results

• The consistency , associated results and properties

• The efficiency and relative efficiency of estimators


