
1. Introduction
Welcome  to  the  series  of  E-learning  modules  on Tchebychev’s  inequality,  proof  and 
applications. In this module,  we are going to cover  Tchebychev’s inequality,  its  proof  and 
applications, relationship with the empherical rule of normal distribution and sample examples 
to apply the inequality. 

By the end of this session, you will be able: 

• ExplainTchebychev’s inequality

• Derive the inequality

• Explain the applications of the inequality

• Apply Tchebychev’s inequality to the practical problems

The Theorem is named after Russian mathematician Pafnuty Chebyshev, although his friend 
and colleague Irenee-Jules Bienayme first formulated it. The theorem was first stated without 
proof by Bienayme in eighteen fifty three and later without proof by Chebyshev in eighteen 
seventy-four. His student Andrey Markov provided a proof in eighteen eighty-four in his PhD 
thesis.

In Probability  Theory,  Chebyshev’s  inequality (also  spelled  as Tchebysheff’s  inequality) 
guarantees that in any  probability distribution, "nearly all" values are close to the  mean - the 
precise statement being that no more than 1 by k square  of the distribution’s values can be 
more than k standard deviations away from the mean. 

The inequality has great utility because it can be applied to completely arbitrary distributions 
(unknown except for mean and variance). For example, it can be used to prove the weak law 
of large numbers.
Tchebychev's inequality is usually stated for random variables, but can be generalized to a 
statement about the measure spaces.

Chebyshev’s inequality is another powerful tool that we can use in statistical analysis. In this 
inequality, we remove the restriction that the random variable has to be non-negative. As a 
price, we now need to know additional information about the variable – (finite) expected value 
and (finite) variance.

In contrast  to Markov’s  inequality,  Chebyshev allows you to estimate the deviation of  the 
random variable from its mean. A common use of these inequalities is that it estimates the 
probability of the deviation from its mean in terms of its standard deviation.
Similar to Markov inequality,  we can state two variants of  Chebyshev.  Let  us look at  the 
simplest version. 



2.  Tchebychev’s  Inequality-
Statement 
Tchebychev’s inequality-statement 
Let X be a Random variable for which Expected value of X and Variance of X exists. Then, for 
any positive number k, 
Probability of modulus of (X minus mu) greater than or equal to k sigma is less than or equal 
to 1 by k square 
Or
Probability of modulus of (X minus mu) less than or equal to k sigma is greater than or equal 
to 1 minus 1 by k square 

Proof: 
Case 1:
Let X be a continuous random variable. Let f of x  be the probability function of x, then 
Sigma square is equal to Expected value of X minus E of X whole square which is equal to 
Expected value of X minus mu whole square, which is equal to integral from minus infinity to 
plus infinity (X minus mu) whole square f of x dx 
Range of values of X is divided into three intervals (minus infinity, mu minus k sigma), (mu 
minus k sigma, mu plus k sigma) and (mu plus k sigma, infinity) 
Therefore, 
Sigma square is equal to  integral from minus infinity to mu minus k sigma (X minus mu) 
whole square f of x dx plus integral from  mu minus k sigma to  mu plus k sigma (X minus mu) 
whole square f of x dx plus integral from  mu plus k sigma to  infinity (X minus mu) whole 
square f of x dx 

Sigma square is greater than or equal to  integral from minus infinity to mu minus k sigma (X 
minus mu) whole square f of x dx  plus integral from  mu plus k sigma to  infinity (X minus mu) 
whole square f of x dx 
(as the second integral which is positive is deleted) 
In the case of first integral on the right hand side 
X less than or equal to mu minus k sigma implies (x minus mu) is less than or equal to minus 
k sigma which implies  minus of (x minus mu) greater than k sigma implies (x minus mu) 
whole square is greater than k  square sigma square 
And in the case of the second integral 
X greater  than or equal to mu plus k sigma implies (x minus mu) is  greater  than or equal to 
k sigma which implies  (x minus mu) whole square is greater than k  square sigma square 

Therefore,
Sigma square is greater than or equal to k square sigma square into [integral from minus 
infinity to mu minus k sigma  f of x dx  plus integral from mu plus k sigma to infinity f of x dx]
Sigma square is greater than or equal to k square sigma square into [Probability of (minus 
infinity less than X less than or equal to mu minus k sigma) plus Probability of (mu plus k 
sigma less than or equal to X less than infinity)] 
Sigma square is greater than or equal to k square sigma square into [Probability of (minus 



infinity less than X minus mu less than or equal to  minus k sigma) plus Probability of (k sigma 
less than or equal to X minus mu less than infinity)] 
Which implies one greater than or equal to k square into [Probability of (minus infinity less 
than X minus mu less than or equal to  minus k sigma) plus Probability of (k sigma less than 
or equal to X minus mu less than infinity)] 
Which implies one greater than or equal to k square into [Probability of  modulus of (X minus 
mu) greater than or equal to k sigma] 

Therefore, 
Probability of  modulus of (X minus mu) greater than or equal to k sigma is less than or equal 
to 1 by k square 
Since P of A plus P of A complement is equal to 1 
P of A complement is equal to 1 minus  P of A 
Then, 
Probability of  modulus of (X minus mu) less than or equal to k sigma is greater than or equal 
to 1 minus 1 by k square 

Case 2:
When X is a discrete random variable
In the case of a discrete random variable, the proof is same as that of continuous random 
variable, but with the difference that the integration has to be replaced by summation.

Note:
Only the case k greater than or equal to 1 provides useful information (when k  is less than 
1, the  right-hand  side  is  greater  than  one,  so  the  inequality  becomes  vacuous  as  the 
probability of any event cannot be greater than one). As an example, using k is equal to root 
2 shows that at least half of the values lie in the interval (mu minus root two sigma, mu plus 
root two sigma).

Since it  can be applied to complete arbitrary distributions (unknown except for mean and 
variance), the inequality generally gives a poor bound compared to what might be possible if 
something is known about the distribution involved.



3. Upper Bound and Lower Bound
Upper Bound and Lower Bound:
The inequality Probability of  modulus of (X minus mu)  greater than or equal to   k sigma  is 
less  than  or  equal  to  1  by k  square  provides  an  upper  bound  for  the  probability  of  the 
difference between  a variable and its mean  to be more than a constant k sigma. Therefore, 1 
by k square is the upper bound. 
The inequality  Probability of  modulus of (X minus mu)  less than or equal to   k sigma  is 
greater than or equal to 1 minus 1 by k square provides a lower bound for the probability of 
the  difference  between   a  variable  and  its  mean   to  be  less  than  a  constant  k  sigma. 
Therefore, 1 minus 1 by k square is the lower bound. 

Comparative bounds
Although Chebyshev's inequality is the best possible bound for an arbitrary distribution, this is 
not  necessarily  true  for  finite  samples.  One  of  the  best  inequalities  Samuelson's 
inequality states that all values of a sample will lie within root (n minus 1) standard deviations 
of the mean. Chebyshev's bound improves as the sample size increases.

When n is equal to ten, Samuelson's inequality states that all  members of  the sample lie 
within  3  standard  deviations  of  the mean.  In  contrast,  Chebyshev states  that  ninety  five 
percent of the sample lies within Thirteen point five seven eight nine standard deviations of 
the mean.
When n is equal to hundred, Samuelson's inequality states that all members of the sample lie 
within  approximately  nine  point  nine  four  nine  nine  standard  deviations  of  the  mean. 
Chebyshev  states  that  ninety  nine  percent  of  the  sample  lies  within  one  forty  standard 
deviations of the mean.

When n  is  equal  to  five  hundred,  Samuelson's  inequality  states  that  all  members  of  the 
sample lie within approximately twenty two point three three eight three  standard deviations 
of the mean. Chebyshev states that ninety nine percent of the sample lies within eleven point 
one six two zero standard deviations of the mean.
It is likely to get better bounds for finite samples as ‘n’ increases.

Chebyshev's Theorem enables us to state that a proportion of data values must be within a 
specified number of standard deviation of the mean. The advantage of this theorem is that the 
theorem applies to any data set regardless of the shape of the distribution of the data.
Hence here is  the Chebyshev's rule:
At least   one minus 1 by k square of the data values must be within k standard deviation of 
the mean, where k is any value greater than 1.

For k is equal to 2, 3, and 4:

• k  is equal to  2, at least  seventy five percent  of the data values must be within 2 
standard deviations of the mean

• k  is equal to  3, at least  eighty nine percent  of the data values must be within 3 
standard deviations of the mean

• k  is equal to  4, at least ninety four percent  of the data values must be within 4 
standard deviations of the mean



4. Empirical  Rule  for  Normal 
Distributions  and  Applications  of 
Chebyshev's Inequality
Empirical rule for normal distributions
The following points apply for a bell-shaped distribution:

• Approximately  sixty eight  percent of the data values fall within one standard deviation 
of the mean

• Approximately ninety five percent of the data values fall within two standard deviations 
of the mean

• Approximately ninety nine point seven five  percent of the data values fall within three 
standard deviations of the mean

Standard scores

• A standard  score  or  z  score  is  used  when  direct  comparison  of  raw  scores  is 
impossible.

• A standard score or z score for a value is obtained by subtracting the mean from the 
value and dividing the result by the standard deviation.

Chebyshev’s Inequality allows us to extend this idea to any distribution even if that distribution 
is  not  normal.  The  theorem  states  that  for  a  population  or  sample,  the  proportion  of 
observations is no less than (1 minus 1 by k square), as long as the standard scores or z 
score’s absolute value is less than or equal to k. You can only use Chebyshev’s Theorem to 
get results for standard deviations over 1. 

Chebyshev’s Inequality  sometimes called Chebyshev’s Theorem have the following useful 
rules:

• No information can  be  obtained on the fraction  of  values falling within  1  standard 
deviation of the mean

• At least seventy five percent will fall within 2 standard deviations of the mean

• At least eighty eight point eight percent will fall within 3 standard deviations

• The proportion of values from a data set that will fall within k standard deviations of the 
mean will be at least one minus 1 by k square, where k is a number greater than 1

• This theorem applies to any distribution regardless of its shape

There are few interesting things to observe here: 

• In  contrast  to  Markov  inequality,  Chebyshev  inequality  allows  you  to  bound  the 
deviation on both sides of the mean.

• The length of the deviation is k sigma on both sides, which is usually (but not always) 
tighter than the bound k into Expected value of X. Similarly, the fraction 1 by k square 
is much more tighter than 1 by k that we get from Markov inequality.

•  Intuitively, if the variance of X is small, then Chebyshev inequality tells us that X is 
close to its expected value with high probability



•  Using Chebyshev inequality, we can claim that at most one fourth of the values that X 
can take is beyond 2 standard deviations of the mean

Applications of Chebyshev Inequality
The following are some of the applications of Tchebycheff’s inequality:

• Using  Tchebycheff’s  inequality,  we  can  get  tighter  bounds  using  higher  moments 
without using complex inequalities

• Inequality is very much used to estimate confidence interval

• Using Tchebycheff’s inequality, we can prove that the median is at most one standard 
deviation away from the mean

• Tchebycheff’s inequality also provides the simplest proof for weak law of large numbers



5. Examples
Examples:

1) Suppose  we  randomly  select  a  journal  article  from a  source  with  an  average  of  one 
thousand words per article with a standard deviation of two hundred words. We can then infer 
that the probability that it has between six hundred and one thousand four hundred words (i.e. 
within k is  equal  to  2  Standard  deviations  of  the  mean)  must  be  more  than  seventy-five 
percent. 

Solution:
Here mu is equal to one thousand, sigma is equal to two hundred and k is equal to 2
By Tchebycheff’s inequality,
Probability of  modulus of (X minus mu) less than or equal to k sigma  is  greater than or 
equal to 1 minus  1 by k square
Which implies Probability of  modulus of (X minus one thousand) less than or equal to 2 into 
two hundred  is  greater than or equal to 1 minus 1 by 4 which is equal to zero point seven 
five. 
Hence, there is less than 1 by k square, which is equal to 1 by 4 chance to be outside that 
range by Chebyshev’s inequality. On the other hand, we can then infer that the probability that 
it has between six hundred and one thousand and four hundred words (i.e. within k is equal to 
2 Standard deviations of the mean) must be more than seventy-five percent. 

2) X is a random variable with mean 8 and variance 4. Find a lower bound to Probability of 
modulus of x minus eight less than four.
Solution:
By Tchebycheff’s inequality 
Probability of  modulus of (X minus mu) less than or equal to k sigma is greater than or equal 
to 1 minus 1 by k square 
Given mu is equal to 8 and sigma square is equal to 4 

Therefore, Probability of  modulus of (X minus 8) less than or equal to k into 2  is  greater than 
or equal to 1 minus 1 by k square 
Putting 2k is equal to 4, we get k is equal to 2 
Then, 1 minus 1 by k square is equal to 1 minus 1 by 4, which is equal to 3 by 4 
The lower bound of the probability is equal to 1 minus 1 by k square is equal to 3 by 4, which 
is equal to point seven five 

3) If X is a random variable with mean is equal to 3 and variance is equal to 2. Find t such that 
Probability of modulus of (x minus 3) less than t is greater than or equal to zero point nine 
nine 
Solution:
Given  mu is equal to 3 and sigma square is equal to 2 
By Tchebycheff’s inequality, 
Probability of  modulus of ( X minus mu)  less than or equal to k into sigma  is  greater than or 
equal to 1 minus  1 by k square 
Substituting 



Probability of modulus of (X minus 3) less than or equal to  k into root 2 is greater than or 
equal to 1 minus 1 by k square. Call this as (1) 

Put 1 minus 1 by k square is equal to zero point nine nine 
Then, 1 by k square is equal to 1 minus zero point nine nine, which is equal to zero point zero 
one, which implies k is equal to ten 
Substituting in (1) 
Probability of  modulus of (X minus 3)  less than or equal to  ten  into root 2 is greater than or 
equal to zero point nine nine 
But given that 
Probability of  modulus of (X minus 3)  less than t is  greater than or equal to zero point nine 
nine 
Therefore, t is equal to ten into root 2, which is equal to fourteen point one four

Here’s a summary of our learning in this session, where we understood:

• The concept of Tchebycheff’s inequality

• The proof of Tchebycheff’s inequality or theorem

• The applications of Tchebycheff’s inequality

• The comparison with empirical rule of Normality

• How to apply the Tchebycheff’s inequality and to get the lower and upper bounds


