Glossary

Random Variable - A random variable is an assignment of numbers to possible outcomes of a random experiment

Discrete random variable - A discrete <u>random variable</u> is one whose set of possible values is countable

continuous random variable - A <u>quantitative random variable</u> is *continuous* if its set of possible values is uncountable

Moment generating function - the **moment-generating function** of a <u>random variable</u> X is $M_X(t) = E[e^{tx}]$, for tER

wherever this expectation exists.

uniqueness theorem - The Uniqueness explains moment generating functions uniquely defines the probability distribution of a function of random variables.

probability distribution - The probability distribution of a <u>random variable</u> specifies the chance that the variable takes a value in any subset of the real numbers. The probability distribution of a <u>random variable</u> is completely characterized by the cumulative probability distribution function

probability density function - The chance that a <u>continuous random variable</u> is in any range of values can be calculated as the area under a curve over that range of values. The curve is the probability density function of the random variable. That is, if X is a continuous random variable, there is a function f(x) such that for every pair of numbers $a \le b$, $P(a \le X \le b) = (area under f between a and b); f is the probability density function of X$

Distribution - The distribution of a set of numerical data is how their values are distributed over the real numbers

Distribution function - The empirical (cumulative) distribution function of a set of numerical data is, for each real value of x, the fraction of observations that are less than or equal to x **joint probability distribution** - If $X_1, X_2, ..., X_k$ are <u>random variables</u> defined for the same experiment, their *joint probability distribution* gives the probability of events determined by the collection of random variables: for any collection of sets of numbers $\{A_1, ..., A_k\}$, the joint probability distribution determines P($(X_1 \text{ is in } A_1) \text{ and } (X_2 \text{ is in } A_2) \text{ and } ... \text{ and } (X_k \text{ is in } A_k)$).

Transformation technique – Transformations technique turn set of variables into other set of random variables variables.

jacobian - an mathematical term used when changing variables to simplify a region or an integrand.