Glossary

Random Variable - A random variable is an assignment of numbers to possible outcomes of a random experiment

probability distribution - The probability distribution of a random variable specifies the chance that the variable takes a value in any subset of the real numbers. The probability distribution of a random variable is completely characterized by the cumulative probability distribution function

probability density function - The chance that a continuous random variable is in any range of values can be calculated as the area under a curve over that range of values. The curve is the probability density function of the random variable. That is, if X is a continuous random variable, there is a function f(x) such that for every pair of numbers $a \le b$, $P(a \le X \le b) =$ (area under *f* between *a* and *b*); *f* is the probability density function of X

continuous random variable - A quantitative random variable is *continuous* if its set of possible values is uncountable

Mean: mean of the distribution is the The expected value of a random variable which is defined as the long-term limiting average of its values

Mode - modal value is that value of X for which the probability density function f(x) is maximum

Moment – r^{th} moment is the expected value of X^r of the random variable if measured from zero, or in general it is defined as expected value of (X-A)^r where A is any arbitrary point

Parameter: A numerical property of such as (v1, v2) the degree of freedom of the distribution

Degrees of freedom (df): The degrees of freedom reflect the number of independent information available to derive the distribution

Skewed Distribution. - A distribution that is not symmetrical

t- Distribution- the distribution of $T = X/\sqrt{(Y/n)}$ where X is standard Normal variate and Y is chi square variate with n degree of freedom, the distribution of T is t - variate with n degree of freedom

Chi square distribution -If $X_1, X_2, ..., X_n$ are independent Normal random variables

with parameters μi and σi then the distribution of X = $\sum_{i=1}^{n} \left(\frac{Xi - \mu i}{\sigma i} \right) 2$

chi-square

Transformation technique – Transformations technique turn set of variables into other set of random variables variables.

jacobian - an mathematical term used when changing variables to simplify a region or an integrand