Frequently asked questions:

1. Define F random Variate.

Let U and V are two independent random variables having chi-square distribution

U /v,

with v1 and v2 degree of freedom, then X=V /v isa F random variable having v1
2

and v2 degree of freedom

1. Write the pdf of F variate

The pdf of F variate with v1 and v2 degree of freedom is
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2. Derive the pdf of F variate with v1 and v2 degree of freedom

Let U and V are independent random variables having chi-square distribution
with v1 and v2 degree of freedom.

Then the joint density of U and V is given by

g(u,v) = g(u) . g(v)
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Consider the transformation

U /v,
X= V /V2 and Y=V

The inverse transformation is
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The jacobian of the transformation is
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Hence the joint density of X and Y is
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Now, integrating out with respect to y we get the distribution of X
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By making the substitution w=( v2 ) we get
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Using symbol we can write as
X~F(v1, v2)

3. Sketch the F-distribution probability curve :
F-distributions are generally skewed. The shape of an F-distribution depends on the

values of v1 and v2 the degrees of freedoms
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5. Derive the Mean of the distribution
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By making the substitution 1/y=(1 + E X ) we get or x= y vl
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Observe that mean is independent of v1

6. Derive the Mode F distribution:
The mode or modal value is that value of X for which the probability density
function f(x) is maximum.
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Now differentiation with respect to x we have
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X= vl V242 for v1>2 It can be easily verified that f"(x) <0. Therefore mode
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of the distribution is x= Vl V2 4+ 2 for v1>2

Observe that the distribution is unimodal
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Also observe that mode = V2 4+ 2 Vl Hence for F distribution, mode is

always less than unity



7. Write the pdf of F distribution in the following cases
(i) 2 and n degree of freedom
(ii) N and n degree of freedom
(iii) 2 and 2 degree of freedom
(iv) 1 and 1 degree of freedom

i)y  Ifv1=2,
f(x)=1/(1+2x/n)"*"2, x€(0,)
(i)  Ifvi=v2say =n,
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(i) If vi=v2=2,
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(iv)  If vi=v2=1,

fix)=1/mx (1+x), x€(0,%)

8. : Suppose that X has the F distribution with v71 degrees of freedom in the
numerator and v2 degrees of freedom in the denominator. Then prove
that 1/X has the F distribution with v2 degrees of freedom in the
numerator and v1 degrees of freedom in the denomination

The pdf of F with v1 and v2 degree of freedom is
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Making the substitution, y=1/x, hence dy=1/x?dx

The pdf can be written using the transformation technique as
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Which is pdf of F variate with v2 and v1 degree of freedom.

9. . : Suppose that T has the t distribution with n degrees of freedom. Then
prove that X=T? has the F distribution with 1 and n degrees of freedom.

Let T has the t distribution with n degrees of freedom. The pdf of T is given by
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Consider the transformation X=T?,

the inverse transformation in the interval O<t<e«is
T=vX, dt/dx = 1/2x

The pdf of X using transformation technique is
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similarly in the range -«<t<0 the pdf of x is
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Combining the pdf of X is
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10. : Suppose that X and Y are independent random variables, each with the
exponential distribution with rate parameter A. Then prove that Z=X/Y.
has the F distribution with 2 and 2 degrees of freedom.

The joint pdf of X and Y is

f(x,y) = A> e™ eV

Consider the transformation

Z=XIY, W=Y The inverse transformation is X=ZW, Y=W, The jacobian of the
W Z

transformationisj=|()  ][=w

The joint density of z and w is
g(Z,W) - )\2 e-)\ZW e-)\W w
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Now, integrating out with respect to w we get the distribution of z as

a(z) =

Tg(z,w)dw
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= (1 4 2)2 , z>0 which is pdf of F distribution with 2 and 2 degree of freedom.

11.If X follow F distribution with v1 and v2 degree of freedom and if we let
v2 -> « then Y= v1X follow chi-square distribution with v1 degree of
freedom

The pdf of X is
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Using 1 and 2 in * we get the pdf of Y as
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Which is the pdf of chi square variate with v1 degree of freedom.

12.Write the Application of F distribution:
The applications are
1. Testing the homogeneity of variance
2. In the analysis of variance technique
3. To test the equality of several regression coefficients



