
 
 

Frequently asked questions: 
1. Define F random Variate. 

 Let U and V are two independent random variables having chi-square distribution 

with v1 and v2 degree of freedom, then X=
2

1

/

/

vV

vU
is a  F random variable having v1 

and v2 degree of freedom 

1. Write the pdf of F variate  

 

The pdf of F variate with v1 and v2 degree of freedom is  
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2. Derive the pdf of F variate with v1 and v2 degree of freedom 

  Let U and V are independent random variables having chi-square distribution 
with v1 and v2 degree of freedom. 

Then the joint density of U and V is given by  

g(u,v) = g(u) . g(v) 
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Consider the transformation  

X=
2
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vV

vU
 and Y=V 

The inverse transformation is  
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The jacobian of the transformation is  
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Hence the joint density of X and Y is  

f(x,y) = 
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   for x>0 and 

y>0 

Now, integrating out with respect to y we get the distribution of X 

I.e. f(x) = 
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By making the substitution w=( 2

1
1(2/

v

v
xy  ) we get  



f(x) =  
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Using  symbol we can write as
X~F(v1, v2) 

3. Sketch the F-distribution probability curve :  

F-distributions are generally skewed. The shape of an F-distribution depends on the 

values of v1 and v2  the degrees of freedoms 



 

 

5. Derive the Mean of the distribution 

Mean = E(X) = 
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By making the substitution 1/y=( x
v

v

2

1
1 ) we get or x= 1
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Or E(X) =  22
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Observe that mean is independent of v1 

 

6. Derive the Mode F  distribution:   
The mode or modal value is that value of X for which the probability density 
function f(x) is maximum.  

Consider  
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Or log f(x) = K+ (v1/2-1)logx –(v1+v2)/2 log(1+v1/v2x)  where K= 
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  Now differentiation with respect to x  we have 
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equating f`(x) = o  implies 
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 Solving we get 
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 for v1>2  It can be easily verified that f``(x) <0. Therefore mode 

of the distribution is x= 22
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Observe that the distribution is unimodal 

Also observe that  mode = 1
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  Hence for F distribution, mode is 

always less than unity 

 



7. Write the pdf of F distribution in the following cases 
(i) 2 and n degree of freedom 
(ii) N and n degree of freedom 
(iii) 2 and 2 degree of freedom 
(iv) 1 and 1 degree of freedom 

(i) If v1=2,  

f(x)=1/(1+2x/n)1+n/2, x∈(0,∞) 

(ii) If v1=v2 say =n,  

f(x)=Γ(n)/Γ2(n/2). xn/2−1//(1+x)n, x∈(0,∞) 

(iii) If v1=v2=2,  

f(x)=1/(1+x)2,  x∈(0,∞) 

(iv) If v1=v2=1,  

f(x)=1/π√x (1+x), x∈(0,∞) 

 

8. : Suppose that X has the F distribution with v1 degrees of freedom in the 
numerator and v2 degrees of freedom in the denominator. Then prove 
that  1/X has the F distribution with v2 degrees of freedom in the 
numerator and v1 degrees of freedom in the denomination 

  The pdf of F with v1 and v2 degree of freedom is 
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Making the substitution,  y=1/x, hence dy=1/x2dx 

The pdf can be written using the transformation technique as  
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,  y>0 

Which is pdf of F variate with v2 and v1 degree of freedom. 

9. . : Suppose that T has the t distribution with n degrees of freedom. Then 
prove that  X=T2 has the F distribution with 1 and n degrees of freedom.  

Let T has the t distribution with n degrees of freedom. The pdf of T is given by  

f(t) =   21222
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 Consider the transformation X=T2,  
the inverse transformation in the interval 0<t<∞is 
T=√X, dt/dx = 1/2√x 
The pdf of X using transformation technique is  
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 similarly in the range -∞<t<0 the pdf of x is  
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  Combining the pdf of X is  
 

f(x) =   21
2/1

22
1

2/1

1
),(

)
1
(






nn

n
x

x

B
n

which is pdf of F variate with 1 and n degree of 

freedom. 
 

10.  : Suppose that X and Y are independent random variables, each with the 
exponential distribution with rate parameter λ. Then  prove that Z=X/Y. 
has the F distribution with 2 and 2 degrees of  freedom. 

The joint pdf of X and Y is  

f(x,y) = λ2  e-λx  e-λy 

Consider the transformation 

Z=X/Y,  W=Y The inverse transformation is X=ZW, Y=W, The jacobian of the 

transformation is j= 10

zw
= w 

The joint density of z and w is  

g(z,w) = λ2  e-λzw e-λw  w 

= λ2  e-λw(1+z)w,  0<z,w<0 

Now, integrating out with respect to w we get the distribution of z  as 

g(z) = 
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z , z>0 which is pdf of F distribution with  2 and 2 degree of freedom. 

11. If X follow F distribution with v1 and v2 degree of freedom and if we let 
v2 -> ∞ then Y= v1X follow chi-square distribution with v1 degree of 
freedom  

The pdf of X is  
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Taking limit as v2 -> ∞ we have 
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=exp(v1x/2) = exp(y/2)   …(2) as taking the transformation v1x=y 
Using 1 and 2 in *  we get the pdf of Y as  
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Which is the pdf of chi square variate with v1 degree of freedom.
 

 

12. Write the Application of F distribution: 
The applications are  

1. Testing the homogeneity of variance 
2. In the analysis of variance technique 
3. To test the equality of several regression  coefficients 

 


