Frequently Asked Questions

1. Define Student's t – variate

Answer : Let $x_1, x_2, ..., x_n$ be a random sample of size n from $N(\mu, \sigma^2)$ population. Then the student's t-statistic is defined as

$$t = \frac{x - \mu}{S / \sqrt{n}} \sim \text{Student's t distribution with (n-1) d.f. with p.d.f. defined by}$$
$$f(t) = \frac{1}{\sqrt{n-1}B(\frac{1}{2}, \frac{n-1}{2})} \frac{1}{\left(1 + \frac{t^2}{n-1}\right)^{n/2}}; \text{ for } -\infty < t < \infty.$$

2. **Define Fisher's t-variate** : According to Fisher, the statistic 't' is the ratio of a standard normal variate to the square root of an independent chi-square variate divided by its degree of freedom. Thus, the statistic 't' is defined as

$$t = \frac{Z}{\sqrt{X/n}}$$
 ~student's t - distribution with n d.f. where Z ~N(0, 1) and X~ $\chi^2_{(n)}$ d.f. such

that the pdf is

$$f(t) = \frac{1}{\sqrt{n} B(\frac{1}{2}, \frac{n}{2})} \cdot \frac{1}{1 + \frac{t^2}{n}}, \quad -\infty < t < \infty$$

3. Write the properties of t- distribution.

Answer : Let $t \sim t_{(n)} d.f.$ then

a. When n = 1, f(t) reduces to

$$f(t) = \frac{1}{\pi} \frac{1}{(1+t^2)}; \quad -\infty < t < \infty,$$

which is the pdf of Cauchy distribution, i.e., t- > Cauchy distribution, when n = 1.

- b. Mean =0 and variance= n/(n-2), for n > 2.
- c. Mean deviation about mean is

$$\frac{\sqrt{n}\,\Gamma[(n-1)/2]}{\sqrt{\pi}\,\Gamma(n/2)}$$

d. All odd ordered moments are zero and all the even ordered moments exist and are constants.

4. Derive the p.d.f. of Student's t- variate.

Answer : Let $x_1, x_2, ..., x_n$ be a random sample of size n from N(μ, σ^2) population. Then the student's t-statistic is defined as

$$t = \frac{x - \mu}{S / \sqrt{n}} \sim \text{Student's t distribution with (n-1) d.f.}$$
(1)

Equation (1) can be written as

$$t^{2} = \frac{n(\overline{x} - \mu)^{2}}{S^{2}} = \frac{n(\overline{x} - \mu)^{2}}{ns^{2}/(n-1)}$$
$$=> \frac{t^{2}}{n-1} = \frac{(\overline{x} - \mu)^{2}}{\sigma^{2}/n} \times \frac{1}{ns^{2}/\sigma^{2}} = \frac{(\overline{x} - \mu)^{2}/(\sigma^{2}/n)}{ns^{2}/\sigma^{2}}.$$

Since x₁, x₂,..., x_n be a random sample of size n from N(μ , σ^2) population, then $\overline{x} \sim N(\mu, \sigma^2/n)$. => $\frac{\overline{x} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$. Hence $\frac{(\overline{x} - \mu)^2}{\sigma^2/n}$ being the square of a standard normal variate, is a chi-square variate with 1 d.f. Also, (ns^2/σ^2) is a chi-square variate with (n-1) d.f. Further, since \overline{x} and s² are independently distributed, $\frac{t^2}{n-1}$ being the ratio of two independent χ^2 variates with 1 and (n - 1) d.f. respectively, is a β_2 [1/2, (n-1)/2] variate and its distribution is given by

$$dF(t) = \frac{1}{B(\frac{1}{2}, \frac{n-1}{2})} \cdot \frac{\left(\frac{t^2}{n-1}\right)^{1/2}}{\left(1 + \frac{t^2}{n-1}\right)^{n/2}} dt; \quad 0 < t^2 < \infty$$
$$= \frac{1}{\sqrt{n-1}} \frac{1}{B(\frac{1}{2}, \frac{n-1}{2})} \frac{1}{\left(1 + \frac{t^2}{n-1}\right)^{n/2}} dt; \quad -\infty < t < \infty.$$

Which is the p.d.f. of Student's t-distribution with (n-1) d.f. where the factor 2 disappears, since the integral form $-\infty < t < \infty$ must be unity.

5. Write a note on probability curve of t - distribution. Answer :

6. Give some of the applications of t- distribution.

Answer : The t- distribution has a wide range of applications, some of which are

- i. To test the significance of sample mean from the population mean or simply, t-test for single mean.
- ii. To test the significance of the difference between two sample means.
- iii. To test the significance of an observed sample correlation coefficient and the sample regression coefficient.
- iv. To test the significance of an observed partial correlation coefficient.

7. Derive the rth moments of t-distribution and hence find its mean and variance

Answer : Since f(t) is symmetric about the line t=0, all the moments of odd order about origin vanish, that is

$$\mu'_{2r+1}(about \ origin) = 0, r = 0, 1, 2, 3, ...$$

In particular, $\mu'_1(about \ origin) = 0 = mean$ therefore the central moments coincide with moment about origin => $\mu_{2r+1} = 0$, for r = 0,1,2,3,...

The moments of even order are given by

$$\mu_{2r} = \mu'_{2r}(about \, origin) = \int_{\infty}^{\infty} t^{2r} f(t) dt = 2 \int_{\infty}^{\infty} t^{2r} f(t) dt$$

$$\therefore \mu_{2r} = 2 \cdot \frac{1}{\sqrt{n} B(\frac{1}{2}, \frac{n}{2})} \int_{1+\frac{t^2}{n}}^{\infty} \frac{t^{2r}}{1+\frac{t^2}{n}} dt$$

The above integral is convergent if 2r < n.

Now let $1 + \frac{t^2}{n} = \frac{1}{x} \Rightarrow t^2 = \frac{n(1 \ x)}{x} \Rightarrow 2t dt = \frac{n}{x^2} dx$

When t = 0, y = 1 and when $t = \infty$, y = 0. Therefore, we have

$$\therefore \mu_{2r} = 2 \cdot \frac{1}{\sqrt{n} B(\frac{1}{2}, \frac{n}{2})} \int \frac{t^{2r}}{\frac{1}{x}} \frac{1}{x} \frac{n}{2tx^2} dx$$

$$= \frac{\sqrt{n}}{B(\frac{1}{2}, \frac{n}{2})} \int_{0}^{1} t^{2} (t^{2})^{(2r-1)/2} x^{\frac{(n+1)}{2} - 2} dx$$

$$= \frac{\sqrt{n}}{B(\frac{1}{2}, \frac{n}{2})} \int_{0}^{1} \frac{n(1-x)}{x} \int_{0}^{r-1/2} x^{\frac{(n+1)}{2} - 2} dx$$

$$= \frac{n^{r}}{B(\frac{1}{2}, \frac{n}{2})} \int_{0}^{1} (1-x)^{r-1/2} x^{\frac{n}{2} - r-1} dx$$

$$= \frac{n^{r}}{B(\frac{1}{2}, \frac{n}{2})} B(\frac{n}{2} - r, r + \frac{1}{2})$$

$$\mu_{2r} = \frac{n^{r} \Gamma[(n/2) - r] \Gamma(r + 1/2)}{\Gamma(\frac{1}{2}) \Gamma(\frac{n}{2})}$$

$$= \frac{n^{r} (r \quad \frac{1}{2})(r \quad \frac{3}{2})....\frac{3}{2}.\frac{1}{2}\Gamma(\frac{1}{2})\Gamma(\frac{n}{2} \quad r)}{\Gamma(\frac{1}{2}).(\frac{n}{2} \quad 1).(\frac{n}{2} \quad 2)...(\frac{n}{2} \quad r)\Gamma(\frac{n}{2} \quad r)}$$
$$= \frac{n^{r} (2r \quad 1)(2r - 3)....3.1}{(n \quad 2).(n \quad 4)...(n \quad 2r)}, n > 2r.$$

In particular,

$$\mu_2 = n \frac{1}{n^2} = \frac{n}{n^2} = \text{var iance}, \text{ for } n > 2.$$

8. Derive the expression for mean deviation about mean of t-distribution: Solution : Since $t \sim t_{(n)} d.f. E(t) = 0$ and hence,

Mean deviation (about mean) = $\int_{\infty}^{\infty} |t| f(t) dt$

$$= 2 \cdot \frac{1}{\sqrt{n} B(\frac{1}{2}, \frac{n}{2})} \int_{0}^{\infty} \frac{t}{1 + \frac{t^{2}}{n}} dt$$

$$= \frac{\sqrt{n}}{B(\frac{1}{2}, \frac{n}{2})} \int_{0}^{\infty} \frac{1}{(1+x)^{(n+1)/2}} dx, \text{ where } x = \frac{t^{2}}{n}$$

$$= \frac{\sqrt{n}}{B(\frac{1}{2}, \frac{n}{2})} \int_{0}^{\infty} \frac{x^{1-1}}{(1+x)^{(n-1)/2+1}} dx,$$
$$= \frac{\sqrt{n}}{B(\frac{1}{2}, \frac{n}{2})} \cdot B(\frac{n-1}{2}, 1) = \frac{\sqrt{n}\Gamma[(n-1)/2]}{\sqrt{\pi} \Gamma(/2)}.$$

9. Derive the limiting form of t- distribution

Proof: Given $t \sim t_{(n)} d.f.$ then we have

$$f(t) = \frac{1}{\sqrt{n} B(\frac{1}{2}, \frac{n}{2})} \frac{1}{1 + \frac{t^2}{n}} \dots \infty < t < \infty$$

$$\lim_{n \to \infty} f(t) = \lim_{n \to \infty} \left[\frac{1}{\sqrt{n} B(\frac{1}{2}, \frac{n}{2})} \frac{1}{1 + \frac{t^2}{n}} \right]$$

$$= \lim_{n \to \infty} \frac{\Gamma[(n+1)/2}{\sqrt{n} \left(\Gamma \frac{1}{2} \times \Gamma \frac{n}{2}\right)} \cdot \lim_{n \to \infty} \left[\frac{1}{1 + \frac{t^2}{n}}\right]$$

Since, $\Gamma_{\frac{1}{2}} = \sqrt{\pi}$, and $\lim_{n \to \infty} \frac{\Gamma(n+k)}{\Gamma n} = n^k$ and therefore we have

$$\lim_{n \to \infty} f(t) = \frac{1}{\sqrt{2\pi}} \lim_{n \to \infty} 1 + \frac{t^2}{n} \sum_{n \to \infty}^{n} 1 + \frac{t^2}{n} + \frac{1}{2} \lim_{n \to \infty} 1 + \frac{t^2}{n}$$

$$\lim_{n \to \infty} f(t) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{t^2}{2}}, \quad \infty < t < \infty$$

which is the pdf of a standard normal variate. Hence, for large n, that is, when $t- > \infty$, t- > N(0, 1) distribution asymptotically.

10. Write a note on critical values of t-distribution

Answer : The critical or significant values of t at level of significance α and d.f.($\upsilon = n-1$) for two tailed test are given by the equation

 $P[|t| > t_{\upsilon}(\alpha)] = \alpha \quad \Longrightarrow P[|t| \le t_{\upsilon}(\alpha)] = 1 - \alpha.$

The values of $t_{\upsilon}(\alpha)$ can be obtained from student's t-table. Since t- distribution is symmetric about t = 0, we have

$$P[t > t_{\upsilon}(\alpha)] + P[t < -t_{\upsilon}(\alpha)] = \alpha$$

 $\Rightarrow 2. P[t > t_{\upsilon}(\alpha)] = \alpha \Rightarrow P[t > t_{\upsilon}(\alpha)] = \alpha/2.$

Therefore, P[$t > t_{\upsilon}(2\alpha)$] = α ,

where, t_{ν} (2 α) gives the significant value of t for a singe tail test(right or left) at level of significance α and d.f.(ν).