Frequently Asked Questions

1. Define a chi-square variate. Write any one application of it.

"The square of a standard normal variate is called a chi-square variate with 1 degree of freedom".

That is, if $X \sim N(\mu, \sigma^2)$, we define $Z = (X - \mu)/\sigma \sim N(0, 1)$, then $Z^2 \sim \chi^2$ with 1 d.f.

Thus in general, if $X_1, X_2, ..., X_n$ are n independent random variables, distributed as $N(\mu_i, \sigma_i^2)$, for i = 1, 2, ..., n, then the random variable χ^2 defined by

$$\chi^2 = \sum_{i=1}^n \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2$$

is said to follow chi-square distribution with n d.f., with pdf is given by

$$f(\chi^2) = \frac{1}{2^{n/2} \Gamma n/2} e^{-\frac{\chi^2}{2}} \chi^{n/2}$$

2. Write the properties of chi-square distribution.

If , the random variable $\, X \sim \chi^2_{(n)} \,$ d.f., then

- i. Mean = n and variance = 2n.
- ii. MGF = $(1-2t)^{-n/2}$, provided |2t| < 1.
- iii. Mode = n-2, for n > 2.
- iv. Sum of k independent chi-square variates with n_i d.f. is a chi-square variate with

$$n = \sum_{i=1}^{k} n_i d.f.$$

- $v. \quad \text{If } X \sim \chi^2 \text{ with } n \text{ d.f. and } \\ Y \sim \chi^2 \text{ with } m \text{ d.f., then } (X/Y) \sim \beta_2(n/2 \text{ , } m/2) \text{ and } X \ / \ (X+Y) \ \sim \beta_1(n/2 \text{ , } m/2).$
- vi. Let $X \sim U(0, 1)$, then $Y = -2\log X$ has χ^2 with 2 d.f.

3. Derive the MGF of a chi-square variate. Hence find mean and variance of chi-square variate.

By definition of MGF of a random variable X

$$M_X(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx$$

Since $X \sim \chi^2$ distribution with n d.f. we have

$$M_{X}(t) = \int_{0}^{\infty} e^{tx} \frac{1}{2^{n/2} \Gamma n/2} e^{-\frac{x}{2}} x^{n/2} dx \quad 0 \le x < \infty;$$

$$= \frac{1}{2^{n/2} \Gamma n/2} \int_{0}^{\infty} e^{-\frac{1}{2}(1 - 2t)x} x^{n/2} dx \quad 0 \le x < \infty;$$

$$=\frac{1}{2^{n/2}\Gamma n/2}\frac{\Gamma n/2}{[(1-2t)/2]^{n/2}}$$

$$M_X(t) = (1-2t)^{-n/2}, \text{ iff } |2t| < 1.$$

Which is the required mgf of a chi-square distribution

Using binomial expansion for negative index, we get from (1)

$$M_X(t) = 1 + \frac{n}{2}(2t) + \frac{\frac{n}{2}(\frac{n}{2}+1)}{2!}(2t)^2 + \dots + \frac{\frac{n}{2}(\frac{n}{2}+1)(\frac{n}{2}+2)\dots(\frac{n}{2}+r-1)}{r!}(2t)^r.$$

Therefore,

 $\mu_r = \text{ coefficient of } \frac{t^r}{r!} \text{ in the expansion of } M_x(t)$

$$=2^{r} \frac{n}{2} \left(\frac{n}{2} + 1 \right) \left(\frac{n}{2} + 2 \right) \dots \left(\frac{n}{2} + r - 1 \right)$$

$$= n(n+2)(n+4) \dots (n+2r-2)$$

When r = 1 then

 $\mathcal{H}_{l} = \text{ coefficient of 't' in the expansion of } M_X(t) = n = Mean$

When r = 2,

 $\mu_2^{\prime}=~{\rm coefficient~of~'t^2/2'}$ in the expansion of M_X(t) = n (n + 2)

Variance =
$$\mu_2 - (\mu_1)^2$$

= $n(n+2) - n^2 = 2n$.

4. State and prove additive property of chi-square distribution.

The sum of independent χ^2 variates is also a chi-square variate. That is, if X_i

(i=1,2,...,k) are independent
$$\chi^2$$
 variates with n_i d.f. respectively then the sum is also a chi-square variate with $n = \sum_{i=1}^{k} n_i$ d.f.

Proof:

Given $X \sim \chi^2$ Distribution with n d.f. then by definition of mgf,

$$M_{X_i}(t) = (1 - 2t)]^{-n_i/2}$$
, iff $|2t| < 1$ and $\forall i = 1, 2, ... k$

Then by uniqueness theorem of mgf when X_i's are independent, we have

$$M_{\sum_{i=1}^{k} X_{i}^{2}}(t) = \prod_{i=1}^{k} M_{X_{i}^{2}}(t) = [M_{X_{i}^{2}}(t)]^{k}$$

=
$$(1-2t)$$
] ^{$-n_1/2$} $\times(1-2t)$] ^{$-n_2/2$} $\times...\times(1-2t)$] ^{$-n_k/2$}

=
$$(1-2t)$$
] ^{$(n_1+n_2+...+n_k)/2$} = $(1-2t)$] ^{$\frac{1}{2}$ $\sum_{i=1}^{k}n_i$}

Which is the mgf of a chi-square variate with $n = \sum_{i=1}^{k} n_i d.f.$

5. Write applications of chi-square distribution.

Chi-square distribution has large number of applications some of which are as follows:

- i. To test the significance of population variance $\sigma^2 = \sigma_0^2$.
- ii. To test the goodness of fit.
- iii. To test the independence of attributes.
- iv. To test the homogeneity of independent estimates of the population variance.
- v. To test the homogeneity of independent estimates of the population correlation coefficient.

6. Let $x_1, x_2, ..., x_n$ be a random sample from normal population with mean μ and variance σ^2 , then show that

i.
$$\bar{x} \sim N(\mu, \frac{\sigma^2}{n})$$
 and

ii.
$$\frac{ns^2}{\sigma^2} = \sum_{i=1}^{n} (x_i - x_i)^2$$
 is a chi-square variate with (n-1)d.f. and i) and ii) are independently distributed.

Ans: The joint probability differential of $x_1, x_2, ..., x_n$ is given by

$$dP(x_1.x_2...x_n) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu_i)^2} dx_1 dx_2...dx_n \quad \infty < x_i < \infty, \quad \forall i = 1, 2, ..., n.$$

Consider the transformation to the variables $Y_i(I = 1,2,...,n)$ by menas of a linear orthogonal transformation Y=AX, where

In particular,
$$a_{11}=a_{12}=...=a_{1n}=1/\sqrt{n}$$

=> $y_1=(1/\sqrt{n})(x_{1+}x_{2+}...,+x_n)=\sqrt{n}x$ (1)

Then $dy_1 = \sqrt{n} dx$

It can be easily shown that the above choice of a_{11} , a_{12} , ..., a_{1n} satisfies the condition of orthogonality, so that, $\sum_{i=1}^{n} a_{ij}^2 = 1$. Since the transformation is orthogonal, we have

$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n\bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + y_1^2, \quad \text{from (1)}$$

$$= \sum_{i=2}^{n} y_i^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2.$$
 (2)

$$\sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} (x_i - \overline{x} + \overline{x} - \mu)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2 = \sum_{i=2}^{n} y_i^2 + n(\overline{x} - \mu)^2,$$
from(2)

Now $|A'A| = |I_n| = 1$, and therefore the jacobian transformation $J = \pm 1$. Thus the joint density function of $(x_1, x_2, ..., x_n)$ is given by

$$dG(y_1.y_2...y_n) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\left(\sum_{i=2}^n y_i^2 + n(\bar{x} - \mu)^2\right)} |J| dy_1.dy_2....dy_n .$$

$$= \left(\frac{1}{(\sigma/\sqrt{n})\sqrt{2\pi}}\right) e^{-\frac{n(\bar{x}-\mu)^2}{2\sigma^2}} d\bar{x} \times \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^{n-1} e^{-\frac{1}{2\sigma^2}\sum_{i=2}^{n} y_i^2} dy_2.dy_2...dy_n$$

Therefore, we have on simplification, we get $g(y_1.y_2.y_3...y_n) = g(y_1).g(y_2.y_3...y_n) => y_1$ and $(y_2,y_3,...y_n)$ are independent where $g(y_1)$ is the pdf of $x \sim N(\mu, \frac{\sigma^2}{n})$ and

$$\sum_{i=2}^{n} y_i^2 = \sum_{i=1}^{n} (x_i - x)^2 = ns^2 = (n-1)S^2$$

are independently distributed. Moreover, $\sum_{i=2}^n y_i^2 / \sigma^2 = ns^2 / \sigma^2 \sim \chi^2_{(n-1)} d.f.$

7. If $X \sim \chi^2$ with n d.f. and $Y \sim \chi^2$ with m d.f., and X and Y are independent then show that $(X/Y) \sim \beta_2(n/2, m/2)$.

Proof: Since X and Y are independent chi-square variates we have

$$f(x,y) = \frac{1}{2^{n/2} \Gamma n/2} e^{-\frac{x}{2}} x^{n/2} e^{-\frac{1}{2}} \frac{1}{2^{m/2} \Gamma m/2} e^{-\frac{y}{2}} y^{m/2} e^{-\frac{1}{2}}, \quad 0 \le x, y < \infty$$

$$= \frac{1}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} e^{-\frac{(x+y)}{2}} x^{n/2} e^{-\frac{1}{2}} y^{m/2} e^{-\frac{1}{2}}, \quad 0 \le x, y < \infty$$

Consider the transformation, u = x/y and v = y then we have x = uv and y = vThe jacobian transformation J is given by

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} v & u \\ 0 & 1 \end{vmatrix} = v$$

Thus the joint pdf of random variables U and V is

$$g(u,v) = \frac{1}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} e^{-\frac{(1+u)v}{2}} (uv)^{n/2} v^{m/2} |J|, \ 0 \le u,v < \infty$$

$$= \frac{1}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} e^{-\frac{(1+u)v}{2}} u^{n/2} v^{m/2+n/2} , \quad 0 \le u, v < \infty$$

Now to get the maginal distribution of U we have to integrate g(u,v) w.r.t. v and thus,

$$g(u) = \frac{1}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} u^{n/2} \int_{0}^{-1} e^{-\frac{(1+u)v}{2}} v^{m/2+n/2} dv,$$

$$=\frac{1}{2^{(n+m)/2}\Gamma n/2\Gamma m/2}u^{n/2}^{-1}\int_{0}^{\infty}e^{-\frac{(1+u)v}{2}}v^{m/2+n/2}dv,$$

$$= \frac{1}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} u^{n/2} \frac{\Gamma(m/2 + n/2)}{\left(\frac{1+u}{2}\right)^{m/2 + n/2}}$$

$$= \frac{1}{B(n/2, m/2)} \frac{u^{n/2-1}}{(1+u)^{m/2+n/2}}; 0 \le u < \infty$$

Which is the pdf of a $\beta_2(n/2, m/2)$ variate, where

$$B(\frac{n}{2},\frac{m}{2}) = \frac{\Gamma \frac{n}{2} \times \Gamma \frac{m}{2}}{\Gamma(\frac{n+m}{2})}.$$

Thus, if $X\sim\chi^2$ with n d.f. and $Y\sim\chi^2$ with m d.f., and X and Y are independent then $(X/Y)\sim\beta_2(n/2$, m/2)

8. If $X \sim \chi^2$ with n d.f. and $Y \sim \chi^2$ with m d.f., and X and Y are independent then show that $X / (X+Y) \sim \beta_1(n/2, m/2)$.

Proof: Since X and Y are independent chi-square variates we have

$$f(x,y) = \frac{1}{2^{n/2} \Gamma n/2} e^{-\frac{x}{2}} x^{n/2} - \frac{1}{2^{m/2} \Gamma m/2} e^{-\frac{y}{2}} y^{m/2} - 1, \quad 0 \le x, y < \infty.$$

$$=\frac{1}{2^{(n+m)/2}\Gamma n/2\Gamma m/2}e^{-\frac{(x+y)}{2}}x^{n/2-1}y^{m/2-1}, \quad 0 \le x, y < \infty$$

Here, we consider the transformation in variables as u=x/(x + y) and v = x + y then we have x=uv and y= (1-u)v

The jacobian transformation J is given by

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} v & u \\ v & 1 & u \end{vmatrix} = v$$

Thus the joint pdf of random variables U and V is

$$g(u,v) = \frac{1}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} e^{-\frac{v}{2}} (uv)^{n/2} \left[(1-u)v \right]^{m/2} \left[1 \right] J, \quad 0 \le u \le 1; \quad 0 \le v < \infty.$$

$$=\frac{1}{2^{(n+m)/2}\Gamma n/2\Gamma m/2}e^{-\frac{v}{2}}u^{n/2} - (1-u)^{m/2} - v^{\frac{n+m}{2}-1}$$

Now to get the maginal distribution of U we have to integrate g(u,v) w.r.t. v and thus,

$$g(u) = \frac{1}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} u^{n/2} (1-u)^{m/2} \int_{0}^{\infty} e^{-\frac{v}{2}} v^{\frac{n+m}{2}} dv$$

$$=\frac{u^{n/2} \cdot (1-u)^{m/2-1}}{2^{(n+m)/2} \Gamma n/2 \Gamma m/2} \frac{\Gamma(\frac{n+m}{2})}{(1/2)^{\frac{n+m}{2}}}$$

$$g(u) = \frac{1}{B(\frac{n}{2}, \frac{m}{2})} u^{n/2} \cdot (1-u)^{m/2-1}; 0 \le u < 1$$

Which is the pdf of a $\beta_1(n/2, m/2)$ variate, where

$$B(\frac{n}{2},\frac{m}{2}) = \frac{\Gamma \frac{n}{2} \times \Gamma \frac{m}{2}}{\Gamma(\frac{n+m}{2})}.$$

Thus, if $X \sim \chi^2$ with n d.f. and $Y \sim \chi^2$ with m d.f., and X and Y are independent then $X / (X + Y) \sim \beta_1(n/2, m/2)$.

9. If $X \sim U(0, 1)$, then show that Y = -2log X has χ^2 with 2 d.f.

Proof: Given $X \sim U(0, 1)$, then f(x) = 1, 0 < x < 1.

Consider, y= - $2\log(x)$ then x = $e^{-y/2}$ => $dx = e^{-y/2}$ (-1/2) dy.

Here, when x = 0 $y = \infty$ and when x = 1, y = 0.

Therefore,

$$g(y) = f(x).|dx/dy| = (\frac{1}{2}) e^{-y/2}$$

$$\Rightarrow g(y) = \frac{1}{2^{2/2} \Gamma(2/2)} e^{-y/2} y^{2/2-1}; \ 0 \le y < \infty$$

which is a chi-square variate with 2 d.f. Thus, if $X \sim U(0, 1)$, then Y = -2log X has χ^2 with 2 d.f.

10. State and prove limiting form of χ^2 Distribution.

Statement : Let $X \sim \chi^2$ distribution with n d.f. then for large n (i.e., as n-- > ∞) χ^2 distribution is asymptotically distributed as standard normal distribution

Proof : Let $X \sim \chi^2$ distribution with n d.f. then

$$M_X(t) = (1-2t)$$
]^{-n/2}, iff | 2t | < 1.

The MGF of standard χ^2 variate Z=(x-n)/ $\sqrt{2}$ n is

$$M_Z(t) = e^{-nt/\sqrt{2n}} (1 - t\sqrt{\frac{2}{n}})]^{n/2}$$
, iff $|2t| < 1$.

Taking logarithm on bothsides of M_Z(t),

$$Log M_Z(t) = -t\sqrt{\frac{n}{2}} - \frac{n}{2} \log(1-t\sqrt{\frac{2}{n}}),$$

$$Log M_Z(t) = -t\sqrt{\frac{n}{2}} + \frac{n}{2} \left[t\sqrt{\frac{2}{n}} + \frac{t^2}{2} \frac{2}{n} + \frac{t^3}{3} \left(\frac{2}{n} \right)^{3/2} + \dots \right]$$

$$= -t\sqrt{\frac{n}{2}} + t\sqrt{\frac{n}{2}} + \frac{t^2}{2} + O(n)^{-1/2}$$

$$\log M_{Z}(t) = \frac{t^{2}}{2} + O(n)^{-1/2}$$

Where $O(n^{-1/2})$ be the order of n containing $n^{1/2}$ and higher powers of n in the denominator.

$$\therefore \lim_{n\to\infty} \log M_Z(t) = \frac{t^2}{2}$$

$$\Rightarrow \lim_{n\to\infty} M_Z(t) = e^{\frac{t^2}{2}},$$

which is the MGF of a standard normal variate. Thus by uniqueness theorem of mgf, χ^2 distribution tends to normal distribution asymptotically. That is as n-- > ∞ , χ^2 distribution tends to normal distribution.