
R-programming - 2 

1. Probability and probability distributions 

2. Statistical inference-t-test 

3. Statistical inference- interval estimation 

4. Correlation analysis using R 

5. Regression analysis using R. 

 

Introduction: In the previous session we have seen how we can enter 

the data to R-software and used R-programming to carry out simple 

statistical analysis. In this session we compute probabilities using 

R-Program, correlation and regression and some statistical 

inference. 

Probability, Distributions and Simulation: 

We look at some of the basic operations associated with probability 

distributions. There are a large number of probability distributions 

available, but we only look at a few. If you would like to know what 

distributions are available you can do a search using the command 

help.search(“distribution”). 

To get a full list of the distributions available in R you can use 

the following command: 

help(Distributions) 

 

R allows for the calculation of probabilities (including cumulative), 

the evaluation of density/mass functions, and the generation of 

pseudo-random variables following a number of common distributions 

Distribution R name Additional arguments Argument 

defaults 

beta beta shape1 (α), shape2 (β)  

binomial binom size (n), prob(p)  

Chi-square chisq df (degree of freedom)   

continuous 

uniform  

unif min(ߠଵ), max(ߠଶ) min=0, max=1 

exponential exp rate(=
ଵ

ఉ
ሻ rate=1 



F distribution f df1,df2  

gamma gamma shape(α),scale(β) scale=1 

hypergeometric hyper m=r, n=N-r, k=n (sample 

size) 

 

normal norm mean (μ), sd(σ) mean=0,sd=1 

Poisson  pois lambda(λ)  

t distribution t Df  

Weibull weibull Shape,scale scale=1 

 

Prefix each R name given above with‘d’ for the density or mass 

function, ‘p’ for the c.d.f, ‘q’ for the percentile function, and ‘r’ 

for the generation of pseudo random variables. 

Example: 

x<-rnorm(100) # simulate 100 standard normal random variables put in 

x. 

	w<-rexp(1000,rate=0.1) # simulate 1000 from exp(θ=10) 

dbinom(3,size=10,prob=0.25) #P(X=3) for X~b(n=10,p=0.25) 

pbinom(3,size=10,prob=0.25) #P(X≤3) in the above distribution. 

pnorm(12,mean=10,sd=2) #P(X≤12) for X~N(μ=10, σ=2) 

qnorm(0.75, mean=10,sd=2) # 3rd quartile of  N(μ=10, σ=2) 

qchisq(0.10,df=8) #10th percentile of ߯ଶ(8) 

qt(0.95,df=20) #95th percentile of t(20) 

 

STATISTICAL INFERENCE 

 Independent sample t test 

# The format in which data has to be entered 

# x y  

 

# where x is  quantitatve 

# where y is  quantitatve  

#---------------------------------------------------------- 

#1. Read the data 

 data<-read.table("E:/rdata.txt",header=TRUE); 

 data; 



 x<-data$x; 

 y<-data$y; 

 

#2. Test for normality of the data 

 shapiro.test(x); 

 shapiro.test(y); # If any one of the variable is significant 

then proceed to step 7 

 

#3. Test for randomness 

 # install the package "randtests" 

  library(randtests); 

  runs.test(x); 

  runs.test(y); # If any one of the variable is significant 

then proceed to step 7 

 

#4. Test for equality of variances 

 var.test(x,y,ratio = 1,alternative="two.sided"); # If the test 

is significant then proceed to step 6 

 

#5. Independent sample t-test (Equal variance) 

  

 #5.1 Two sided alternative 

  t.test(x,y,alternative="two.sided",var.equal = TRUE); 

  

 #5.2 Alternative mean of x greater than mean of y 

  t.test(x,y,alternative="greater",var.equal = TRUE); 

 

 #5.3 Alternative mean of x less than mean of y 

  t.test(x,y,alternative="less",var.equal = TRUE); 

 

#6. Independent sample t-test (Unequal variance) 

  

 #6.1 Two sided alternative 

  t.test(x,y,alternative="two.sided",var.equal = FALSE); 

  



 #6.2 Alternative mean of x greater than mean of y 

  t.test(x,y,alternative="greater",var.equal = FALSE); 

 

 #5.3 Alternative mean of x less than mean of y 

  t.test(x,y,alternative="less",var.equal = FALSE); 

 

#7. Non-parametric test for independent sample t-test is Wilcoxon 

test. 

  

 #7.1 Two sided alternative 

  wilcox.test(x,y,alternative="two.sided"); 

  

 #7.2 Alternative mean of x greater than mean of y 

  wilcox.test(x,y,alternative="greater"); 

 

 #7.3 Alternative mean of x less than mean of y 

  wilcox.test(x,y,alternative="less"); 

 

INTERVAL ESTIMATION 

Interval estimation of the population mean can be computed from 

functions of the following R packages 

• stats - contains the t.test 

• TeachingDemos - contains the z.test; 

• BSDA - contains the zsum.test and tsum.test. 

 

Example: The data is the score of 33 random students from college 

of science and mathematics 84, 93, 101, 86, 82, 86, 88, 94, 89, 94, 

93, 83, 95, 86, 94, 87, 91, 96, 89, 79, 99, 98, 81, 80, 88, 100, 

90, 100, 81, 98, 87, 95, and 94.  The population of these scores 

are believe to be normally distributed with 6.8 standard deviation. 

Determine and interpret the 95% and 99% confidence interval of the 

population mean. 

We observe that the sample size is greater than 30 hence we apply 

z-test 



scores <- c(84, 93, 101, 86, 82, 86, 88, 94, 89, 94, 93, 83, 95, 

86, 94, 87, 91, 96, 89, 79, 99, 98, 81, 80, 88, 100, 90, 100, 81, 

98, 87, 95, 94) 

 

library(BSDA) 

z.test(scores, sigma.x = 6.8) 

The output is as shown below: 

data:  scores  

z = 76.3126, p-value < 2.2e-16 

alternative hypothesis: true mean is not equal to 0  

95 percent confidence interval: 

88.01327 92.65340  

sample estimates: 

mean of x  

 90.33333  

#For 99% Confidence Interval  

z.test(scores, sigma.x = 6.8, conf.level = 0.99) 

  

One-sample z-Test 

data:  scores  

z = 76.3126, p-value < 2.2e-16 

alternative hypothesis: true mean is not equal to 0  

99 percent confidence interval: 

87.28425 93.38241  

sample estimates: 

mean of x  

90.33333  

 

CORRELATION AND REGRESSION 

Correlation is the study of the relationship between two or more 

variables 

Then R-codes for the correlation is: 

cor(variable1,variable2) 

cor.test(variable1, variable2) 

cor(variable1,variable2,method=”spearman”) 



 

Simple Linear Regression Analysis 

Objective: Describe the relationship between two variables, say X and 

Y as a straight line, that is Y is modeled as a linear function of X 

X: explanatory variable 

Y: response variable 

Consider the following example: a random sample of service call 

records for a computer repair operation were examined and the length 

of each call (in minutes) and the number of components repaired or 

replaced were recorded. The data is as follows: 

Sl.no minutes units 

1 23 1 

2 29 2 

3 49 3 

4 64 4 

5 74 4 

6 87 5 

7 96 6 

8 97 6 

9 109 7 

10 119 8 

11 149 9 

12 145 9 

13 154 10 

14 166 10 

 

Let X be the independent variable i.e., units and Y be the dependent 

variable i.e., minutes 

The expected model for the data is ܻ ൌ ߚ   ଵܺߚ

First save the data in the text format in “E” drive of your computer 

with the name as rawdata 

The R –code is as follows 

data<-read.table("E:/rawdata.txt",header=TRUE); 

attach(data); 



plot(units, minutes) 

# fit the regression model using the function lm() 

data1<-lm(minutes~units, data=data) 

#use the function summary() to get some results 

summary(data1) 

The output is as follows: 

Call: 

lm(formula = min ~ uni, data = data) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-9.2318 -3.3415 -0.7143  4.7769  7.8033  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)    4.162      3.355    1.24    0.239     

uni           15.509      0.505   30.71 8.92e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 5.392 on 12 degrees of freedom 

Multiple R-squared:  0.9874,    Adjusted R-squared:  0.9864  

F-statistic: 943.2 on 1 and 12 DF,  p-value: 8.916e-13 

 

Conclusion: In this session we have seen how we use R-Program for 
inferential statistics such as t-test, wilcoxon test, correlation and 
Regression. 

 


