
Frequently Asked Questions 
 
 
1. Define gamma distribution. 
Answer:  
A random variable X is said to follow gamma distribution with parameters α, β if its pdf is 

given by, 0
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2. Define beta distribution of 1st kind. 
Answer: 
A random variable X is said to follow beta distribution of first kind with parameters m and n if 

its pdf is given by, 101
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3. Define beta distribution of 2nd kind. 
Answer: 
A random variable X is said to follow beta distribution of 2nd kind with parameters m and n if 

its pdf is given by 0
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4. In beta distribution of first kind, if parameters m and n are equal to 1, then identify the 

resulting distribution. 
Answer:  
If we take m=1 and n=1 in the pdf of beta distribution of first kind, we get, 

101 <<= xxf ,)( , which is the pdf of uniform distribution on (0,1). 

5. How to obtain beta distribution of first kind from beta distribution of first kind? 
Answer: 
Beta distribution of second kind is transformed to beta distribution of first kind by the 
transformation, 1+x=1/y 
Or y = 1/(1+x) 
Thus, if X~ β2(m, n) the Y is a β1(m, n)  
 
6. Find mean of gamma distribution. 
Answer  
If X ~ Gamma (α, β) then mean µ1’  
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7. Obtain variance of gamma distribution. 
Answer:  
Variance of the distribution is given by, V(X)= µ2 =µ2’-[µ1’]

2  
First let us find µ2’ 
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8. Obtain mgf of gamma distribution. 
Answer:  
If X~ Gamma(α, β) then mgf of the distribution is given by  
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9. State and prove additive property of gamma distribution. 
Answer:   
The sum of independent gamma variates is also a gamma variate.  More precisely, if X1, 
X2,… Xn are independent variables, such that Xi ~ Gamma(αi, β) then X1+X2+ … +Xn is also 
gamma variate with parameter α1+ α2+ … +αn .   
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Proof 

Since Xi ~ Gamma(αi, β), i

i
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The mgf of the sum X1+X2+ … +Xn is given by, 
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Which is the mgf of gamma variate with parameter Σαi, and β.  Hence 
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10. Obtain an expression for rth raw moment of beta distribution of first kind. 
Answer: 
In general, rth raw moment is given by, 
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11. Obtain the expression for rth raw moment of beta distribution of 2nd kind and hence find 

mean and variance.   
Answer:  
In general rth raw moment is given by,  



∫∫
∞

+

−
∞

+
===

0

1

0 1

1
dx

x

xx

nmB
dxxfxXE

nm

mr

rr

r
)(

.

),(
)(.)(

)(
'µ  

 
),(

),(

)(),( )()(

)(

nmB

rnrmB
dx

x

x

nmB
rnrm

rm −+
=

+
= ∫

∞

−++

−+

0

1

1

1

nm

rnrm

ΓΓ

−Γ+Γ
=

)()(
 

In the above general expression, if we put r=1 we get mean. 
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12. Write the relation between gamma and beta distributions? 
Answer: 
If X and Y are two independent gamma variates, then 

• Ratio of two variables, X/Y is a beta variate of II kind. 

• The ratio, X/(X+Y) follows beta distribution of I kind. 
 
13. Write the expressions for coefficient of skewness and kurtosis for beta distribution of first 

kind. 
Answer: 

Coefficient of skewness is given by, 
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Coefficient of kurtosis is given by, 
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14. Define gamma function. 
Answer: 

If X has gamma distribution with parameters α, β then 0
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Since above is a pdf, ∫ =
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The integral function is known as gamma function. 

  

15. Show that if Xi, i=1, 2, … n are iid exponential random variables with parameter β, then 

ΣXi~Gamma(n, β) 
Answer: 

Xi~exp(β), then mgf is given by, 1
1

−−= )()(
β
ttM

iX
 

Now consider mgf of the sum X1+X2+ … +Xn  
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Which is mgf of gamma distribution with parameters n and β.  Hence, by uniqueness 

theorem of mgf, ΣXi~Gamma(n, β). 


