
1.  Introduction  and   Normal 
Distribution
Welcome to the series of E-learning modules on standard Univariate continuous distributions 
and their properties.
Here we shall discuss in brief, the different continuous distributions and their properties.

By the end of this session, you will be able to: 

• Understand the uses, applications and properties of
o Normal distributions

o Exponential distribution

o Beta distribution

o Gamma distribution 

o Pareto distribution

o Laplace distribution

o Cauchy distribution and 

o Logistic distribution

We consider some univariate continuous distributions in this module like uniform distribution, 
normal distribution,  gamma distribution,  beta distribution,  exponential  distribution,  Laplace, 
Weibul, Logistic and Cauchy distribution. We shall discuss these distributions in brief and in 
the coming modules we will discuss these distributions in detail. 

Consider the normal distribution.
Normal distribution plays a very important role in statistical theory because of the following 
reasons.

i. Most of the distributions occurring in practice, e.g., Binomial, Poisson, Hypergeometric 
distributions etc. can be approximated by normal distribution.

ii. Moreover, many of the sampling distributions, e.g., Student’s t, Snedecor’s F and – chi 
square distributions, etc., tend to normality for large samples

iii. Even if a variable is not normally distributed, it can sometimes be brought to normal 
form by simple  transformation of  variable.   For  example,  if  the  distribution  of  X is 
skewed, the distribution of square root of x might come out to be normal

iv. If X follows normal distribution with parameters mu and sigma square, then Probability 
of (mu minus three into sigma is less than or equal to X less than or equal to mu plus 
three into sigma) is equal to Probability of (minus three less than or equal to Z less 
than or equal to three) is equal to zero point nine, nine, seven, three.  This property of 
normal distribution forms the basis of entire large sample theory

v. Many of the distributions of sample statistics (for example, the distributions of mean, 
sample variance etc.,) tend to normality for large samples and as such they can be 
best studied with the help of the normal curves.

vi. The entire theory of small sample tests, namely t, F, chi square tests, etc., is based on 
the fundamental assumption that the parent populations form which the samples have 
been drawn follow normal distribution

vii. Normal distribution finds large applications in Statistical Quality Control in industry for 



setting control limits.

The  following  quote  by  Lipman  rightly  reveals  the  popularity  and  importance  of  normal 
distribution.
“Everybody believes in the law of errors (the normal curve), the experimenters because they 
think it is a mathematical theorem, the mathematicians because they think it is experimental 
fact.”

W, J Youden of the National Bureau of Standards describes the importance of the Normal 
Distribution artistically in the following words.
The normal Law of errors Stands out in the Experience of mankind As one of the broadest 
Generalizations of natural Philosophy.   It serves as the Guiding instrument in researches, In 
the physical and social sciences And   in   medicine,   agriculture   and Engineering.  It is an 
indispensable tool  for The   analysis and the interpretation of the Basic data obtained by 
observation and experiment.



2.  Properties   of  Normal 
Distribution
Now let us list out the properties of normal distribution.
The normal distribution with parameters mu and sigma square has the following properties.

• The curve of the distribution is bell-shaped and symmetrical about the line x is equal 
to mu

• Mean, median and mode of the distribution coincide.

• As x  increases  numerically,  f  of  (x)  decreases  rapidly,  the  maximum probability 
occurring at the point  x is equal to mu and is given by, one divided by sigma into 
square root of two into pi

• Beta one is equal to zero and beta two is equal to three  

• All odd order central moments are equal to zero and even order central moments 
are given by, mu two r is equal to one into three into five into etc., into (2 r minus 
one) into sigma  to the power two into r, where (r is equal to zero, one, two etc.)

• Since f of (x) being the probability, can never be negative, no portion of the curve 
lies below the x axis

• Linear combination of independent normal variates is also a normal variate

• x-axis is an asymptote to the curve

• The points of inflexion of the curve are x is equal to mu plus or minus sigma

• Mean deviation about mean is equal to sigma into square root of two divided by pi 
nearly equal to four divided by five into sigma

• Quartiles are given by, Q one is equal to mu minus zero point six seven four five 
sigma and Q three is equal to mu plus zero point  six seven four five sigma

• Quartile deviation Q.D. is equal to Q three minus Q one whole divided by two nearly 
equal to two divided by three into sigma.  We have approximately Q D is to M D is to 
S D is equal to two by three into sigma is to four by five into sigma is to sigma, 
which is same as two by three is to four by five is to one

• Area property of normal distribution is as follows
    Probability of mu minus sigma less than X less than mu plus sigma is equal to zero 

point six eight two six;
    Probability of mu minus two into sigma less than X less than mu plus two into sigma 

is equal to zero point nine five four four
    Probability of mu minus sigma less than X less than mu plus sigma is equal to zero 

point nine nine seven three

• If X and Y are independent standard normal variates, then it can be easily proved that 
U is equal to X plus Y and U is equal to X minus Y are independently distributed as 
normal distribution with parameters (zero, and two) 
The converse of this property is true which is given by D. Bernstein.  That is if X and Y 
are independent and identically distributed random variables with finite variances and if 
U is equal to X plus Y and U is equal to X minus Y are independent, the all random 
variables X, Y, U and V are independent. 

Some of the above properties will be proved in our discussions in the coming modules.



3.  Uniform,  Exponential  and Beta 
Distribution
Uniform distribution is also known as a rectangular distribution. Since the curve of uniform 
distribution describes a rectangle over the X axis and between the ordinates at x is equal to ‘a’ 
and ‘x’ is equal to ‘b’ if X follows uniform distribution over the interval (a, b).

The mean of the distribution is usually the mean of the limits of the range of the distribution. 
That is if X has uniform distribution over the interval (a, b) then the mean of the distribution is 
given by, (a plus b) divided by two.  Also for uniform distribution, the mean is equal to median. 
Here mode is ill-defined.

Now let us discuss some of the properties of uniform distribution.
The probability that a uniformly distributed random variable falls within any interval of fixed 
length is 

• Independent of the location of the interval itself 

• But it is dependent on the interval size, so long as the interval is contained in the 
distribution's support

• This distribution can be generalized to more complicated sets than intervals. 

• If S is  a Borel  set of  positive,  finite  measure,  the  uniform  probability  distribution 
on S can  be  specified  by  defining  the  probability  density  function  to  be  zero 
outside S and  constantly  equal  to  1divided  by  K on S,  where K is  the Lebesgue 
measure of S

Now let us look at the properties of exponential distribution.
An important property of the exponential distribution is that it is memoryless. This means that 
if a random variable T is exponentially distributed, its conditional probability obeys
Probability that T greater than s plus t  given T greater than s is equal to probability of T 
greater than t for all s, t greater than or equal to zero. 

This says that  for  conditional probability  we need to wait, for example, more than another 
ten seconds before the first arrival, given that the first arrival has not yet happened after thirty 
seconds, is equal to the initial probability that we need to wait more than ten seconds for the 
first arrival

So, if we waited for thirty seconds and the first arrival didn't happen (T is greater than thirty), 
probability  that  we'll  need  to  wait  another  ten  seconds  for  the  first  arrival  (T is  greater 
than thirty plus ten) is the same as the initial probability that we need to wait more than ten 
seconds for the first arrival (T is greater than ten). The fact that Probability that (T is greater 
than forty given T is  greater  than thirty)  is  equal  to Probability  that  (T greater  than ten) 
does not mean that the events T greater than forty and T greater than thirty are independent.

Now let us consider beta distribution of first kind.  Here the parameters are taken as alpha 
and beta.
If one is less than alpha, less than beta then mode is less than or equal to median, which is 



less than or equal to mean. Expressing the mode (only for alpha greater than one and beta 
greater than one), and the mean in terms of alpha and beta:
Alpha minus one divided by alpha plus beta minus two is less than or equal to median which 
is less than or equal to alpha divided by alpha plus beta.

If one is less than beta less than alpha then the order of the inequalities are reversed. For 
alpha greater than one and β greater than one the absolute distance between the mean and 
the median is less than five per cent of the distance between the maximum and minimum 
values of x. 

On the other hand, the absolute distance between the mean and the mode can reach fifty per 
cent of the distance between the maximum and minimum values of x, for the (pathological) 
case of alpha nearly equal to one and;
 beta nearly  equal  to one  (for  which  values  the  beta  distribution  approaches  the  uniform 
distribution and the differential entropy approaches its maximum value, and hence maximum 
"disorder").



4. Gamma and Pareto Distribution
Now let us consider the gamma distribution.
If a gamma distribution with parameter α and β are considered, then

� Gamma  distribution  is  considered  as  the  distribution  of  alpha  independently 
identically distributed exponential variates with parameter beta

� The gamma distribution has been used to model the size of insurance claims and 
rainfalls.  This means that aggregate insurance claims and the amount of rainfall 
accumulated in a reservoir are modeled by a gamma process

� The  gamma  distribution  is  also  used  to  model  errors  in  multi-level Poisson 
regression models,  because  the  combination  of  the Poisson  distribution and  a 
gamma distribution is a negative binomial distribution

� In neuroscience,  the  gamma  distribution  is  often  used  to  describe  the  distribution 
of inter-spike intervals. Although in practice the gamma distribution often provides a 
good fit, there is no underlying biophysical motivation for using it

� In bacterial gene  expression,  the copy  number of  a constitutively  expressed protein 
often  follows  the  gamma  distribution,  where  the  scale  and  shape  parameter  are, 
respectively, the mean number of bursts per cell cycle and the mean number of protein 
molecules produced by a single mRNA during its lifetime. 

� The gamma distribution is widely used as a conjugate prior in Bayesian statistics. It is 
the  conjugate  prior  for  the  precision  (i.e.  inverse  of  the  variance)  of  a normal 
distribution. It is also the conjugate prior for the exponential distribution. 

Now let us consider Pareto distribution.
The Pareto distribution is a skewed, heavy-tailed distribution that is sometimes used to model 
the distribution of incomes and other financial variables.
Pareto originally used this distribution to describe the allocation of wealth among individuals.

It seemed to show rather well the way that a larger portion of the wealth of any society is 
owned by a smaller percentage of the people in that society.  He also used it  to describe 
distribution  of  income. This  idea  is  sometimes  expressed  more  simply  as  the Pareto 
principle or the "eighty-twenty rule" which says that twenty percent of the population controls 
eighty percent of the wealth. 

� However, the eighty twenty rule corresponds to a particular value of α, and in fact, 
Pareto's data on British income taxes in his Cours d'économie politique indicates 
that about thirty percent of the population had about seventy percent of the income. 

� The probability density function graph at the beginning of this article shows that the 
"probability" or fraction of the population that owns a small amount of wealth per 
person is rather high, and then decreases steadily as wealth increases. 

Note  that  the Pareto  distribution  is  not  realistic  for  wealth  for  the lower  end.  In  fact, net 
worth may even be negative.
 This distribution is not limited to describing wealth or income, but to many situations in which 
an equilibrium is found in the distribution of the "small" to the "large". 

The following examples are sometimes seen as approximately Pareto-distributed:



� The sizes of human settlements (few cities, many hamlets/villages) 
� File size distribution of Internet traffic which uses the TCP protocol (many smaller 

files, few larger ones) 
� Hard disk drive error rates. 
� Clusters of Bose–Einstein condensate near absolute zero 
� The values of oil reserves in oil fields (a few large fields, many small fields) 

� The length of distribution in jobs assigned to supercomputers (a few large ones, 
many small ones)

� The standardized price returns on individual stocks
�  Sizes of sand particles 
� Sizes of meteorites
� Numbers of  species per  genus (There is  subjectivity involved:  The tendency to 

divide a genus into two or more increases with the number of species in it) 
� Areas burnt in forest fires
� Severity  of  large casualty losses  for  certain  lines  of  business  such  as  general 

liability, commercial auto, and workers compensation 
� In hydrology the Pareto distribution is applied to extreme events such as annually 

maximum one-day rainfalls and river discharges



5.  Laplace,  Cauchy  and  Logistic 
Distribution

Now let us consider the Laplace distribution
� The Laplacian distribution has  been used in  speech  recognition  to  model  priors 

on DFT coefficients. 
� The addition of noise drawn from a Laplacian distribution, with scaling parameter 

appropriate to a function's sensitivity, to the output of a statistical database query is 
the most common means to provide differential privacy in statistical databases.

� The Laplace distribution has found a variety of very specific uses, but they nearly all 
relate to the fact that it has long tails compared to the Normal distribution. 

� It  has  recently  become  quite  popular  in  modeling  financial  variables  (Brownian 
Laplace  motion)  like  stock  returns  because  of  the  greater  tails.  The  Laplace 
distribution is very extensively reviewed in the monograph Kotz et al (2001).

Consider Cauchy distribution.
� The Cauchy distribution is often used in statistics as the canonical example of a 

"pathological" distribution.
� Both its mean and its variance are undefined  
� The  Cauchy  distribution  does  not  have  finite moments of  order  greater  than  or 

equal to one; only fractional absolute moments exist  
� The Cauchy distribution has no moment generating function

• The  Cauchy  distribution  is  an  example  of  a  distribution  which  has 
no mean, variance or higher moments defined. 

• Its mode and median are well defined and are both equal to x naught 
� The Cauchy distribution is an infinitely divisible probability distribution. It is also a 

strictly stable distribution 
� When U and V are  two  independent normally  distributed random 

variables with expected value zero and variance one, then the ratio U divided by V has 
the standard Cauchy distribution.

� It is also an example of a more generalized version of the central limit theorem that is 
characteristic of all stable distributions, of which the Cauchy distribution is a special 
case.

Now let us consider logistic distribution
The  logistic  distribution  —  and  the  S-shaped  pattern  of  its cumulative  distribution 
function (the logistic  function)  and quantile  function (the logit  function)  —  have  been 
extensively used in many different areas. 

One of the most common applications is in logistic regression, which is used for modeling 
categorical dependent variables (e.g. Yes-no choices or a choice of three or four possibilities), 
much as standard linear regression is used for modeling continuous variables (e.g. income or 
population). 



Specifically, logistic  regression models can be phrased as latent variable models with error 
variables following a logistic distribution. This phrasing is common in the theory of discrete 
choice models, where the logistic distribution plays the same role in logistic regression as 
the normal distribution does in probit regression. 

The  logistic  and  normal  distributions  have  a  quite  similar  shape.  However,  the  logistic 
distribution has heavier tails, which often increases the robustness of analyses based on it 
compared with using the normal distribution. 

Some of the other applications are,
� In Biology,  to describe how species populations grow in competition 
� In Epidemiology,  to describe the spreading of epidemics 
� In Psychology, to describe learning 
� Technology ,   to describe how new technologies diffuse and substitute for each 

other 
� In Marketing – the diffusion of new-product sales 
� In Energy – the diffusion and substitution of primary energy sources, as in the Hubbert 

curve
� In Hydrology - In hydrology the distribution of long duration river discharge and rainfall 

(e.g. monthly and yearly totals, consisting of the sum of respectively thirty and three 
hundred and sixty  daily values)  is  often thought  to  be almost normal  according to 
the central limit theorem. 

The normal distribution, however, needs a numeric approximation. As the logistic distribution, 
which can be solved analytically, is similar to the normal distribution, it can be used instead.

� In Physics - the cdf of this distribution describes a Fermi gas and more specifically the 
number of electrons within a metal that can be expected to occupy a given quantum 
state. Its range is between 0 and 1, reflecting the Pauli exclusion principle. The value is 
given  as  a  function  of  the  kinetic  energy  corresponding  to  that  state  and  is 
parameterized  by  the Fermi  energy and  also  the  temperature  (and Boltzmann 
constant).

• By changing the sign in front of the "one" in the denominator, one goes from Fermi–
Dirac statistics to Bose–Einstein  statistics.  In  this  case,  the  expected number of 
particles (bosons) in a given state can exceed unity, which is indeed the case for 
systems such as lasers. 

Here’s a summary of our learning in this session where we have:

• Understood the uses, applications and properties of
o Normal distributions

o Exponential distribution

o Beta distribution

o Gamma distribution 

o Pareto distribution

o Laplace distribution

o Cauchy distribution and 

o Logistic distribution


