Frequently Asked Questions

1. Define bivariate moment of discrete variable.

Answer:

The mathematical expectation of a function g(x, y) of two dimensional variable (X, y) is given

by
$$E[g(X,Y)] = \sum_{i} \sum_{j} x_{i} y_{j} P(X = x_{i} \cap Y = y_{j})$$

Provided the expectation exists.

2. Define bivariate moment of continuous variable.

Answer:

The mathematical expectation of a function g(x, y) of two dimensional variable (X, y) with pdf f(x, y) is given by $E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y)dxdy$, provided the expectation exists.

3. Write an expression for bivariate raw moment of discrete random variables.

Answer

In particular, the rth and sth product moment about origin of the random variables X and Y is defined as $\mu_{rs}' = \sum_{i} \sum_{i} x_{i}^{r} y_{j}^{s} P(X = x_{i} \cap Y = y_{j})$

4. Write an expression for bivariate raw moment of continuous random variables.

Answer

In particular, the rth and sth product moment about origin of the random variables X and Y is defined as $\mu_{rs}' = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^r y^s f(x,y) dx dy$

5. Mention 1st, 2nd and 3rd order raw moments.

Answer:

 1^{st} order raw moments - E(X), E(Y) 2^{nd} order raw moments - E(X²), E(XY), E(Y²) 3^{rd} order raw moments - E(X³), E(X²Y), E(XY²), E(Y³)

6. Write an expression for bivariate central moment of random variables.

Answer:

The joint rth central moment of X and sth central moment of Y is given by

$$\mu_{rs} = E[\{X - E(X)\}^r \{Y - E(Y)\}^s] = E[\{X - \mu_X\}^r \{Y - \mu_Y\}^s], \text{ where } E(X) = \mu_X, E(Y) = \mu_Y$$

7. Mention 1st, 2nd and 3rd order central moments.

Answer

1st order central moments - E[X-E(X)], E[Y-E(Y)]

 2^{nd} order central moments - $\text{E}[X-\text{E}(X)]^2,\,\text{E}\{[X-\text{E}(X)][Y-\text{E}(Y)]\}$ and $\text{E}[Y-\text{E}(Y)]^2$

 $3^{rd} \ order \ central \ moments \ - \ E[X-E(X)]^3, \ E\{[X-E(X)]^2[Y-E(Y)]\}, \ E\{[X-E(X)][Y-E(Y)]^2\}, \ E[Y-E(Y)]^3 \ (Y-E(Y))^3 \$

8. Obtain an expression for variance in terms of expectations.

Answer:

$$V(X)=E[X-E(X)]^2=E[X^2+\{E(X)\}^2-2XE(X)]$$

=E(X^2)+\{E(X)\}^2-2E(X)E(X)=E(X^2)-\{E(X)\}^2

9. Obtain an expression for covariance in terms of expectations.

Answer:

$$sCov(X,Y)=E[{(X-E(X))}{Y-E(Y)}]=E[XY-YE(X)-XE(Y)+E(X)E(Y)]$$

= $E(XY)-E(Y)E(X)-E(X)E(Y)+E(X)E(Y)=E(XY)-E(X)E(Y)$

10. For any two random variables X and Y, show that $V(aX\pm bY)=a^2V(X)+b^2V(Y)\pm 2abCov(X, Y)$.

Answer:

$$V(aX\pm bY) = E[(aX\pm bY)-E(aX\pm bY)]^{2} = E[(aX\pm bY)-\{aE(X)\pm bE(Y)\}]^{2}$$

$$= E[a\{X-E(X)\}\pm b\{Y-E(Y)\}]^{2}$$

$$= a^{2}E[X-E(X)]^{2}+b^{2}E[Y-E(Y)]^{2}\pm 2abE[X-E(X)]E[Y-E(Y)]$$

$$= a^{2}V(X)+b^{2}V(Y)\pm 2abCov(X, Y)$$

11. Write an expression for V(X+Y).

Answer:

In general we know that, $V(aX\pm bY)=a^2V(X)+b^2V(Y)\pm 2abCov(X, Y)$

Putting a=1 and b=1 and considering only plus we get,

$$V(1.X+1.Y)=1^2V(X)+1^2V(Y)+2.1.1.Cov(X, Y)=V(X+Y)=V(X)+V(Y)+2Cov(X, Y).$$

12. Write an expression for V(X-Y)

Answer:

In general we know that, $V(aX\pm bY)=a^2V(X)+b^2V(Y)\pm 2abCov(X, Y)$

Putting a=1 and b=1 and considering only plus we get,

$$V(1.X-1.Y)=1^2V(X)+1^2V(Y)-2.1.1.Cov(X, Y)=V(X-Y)=V(X)+V(Y)-2Cov(X, Y).$$

13. Show that when X and Y are independent Cov(X, Y)=0.

Answer:

We know that, Cov(X, Y) = E(XY) - E(X)E(Y)We know that if X and Y are independent, E(XY) = E(X)E(Y)Therefore, Cov(X, Y) = E(X)E(Y) - E(X)E(Y) = 0

14. Two random variables X and Y have the following joint probability density function. $f(x,y)=k(4-x-y);0\le x\le 2,\ 0\le y\le 2.$ Find constant k, E(X), E(Y), V(X), V(Y) and Cov(X,Y).

Answer:

Since f(x,y) is a pdf, $\iint f(x,y)dx dy=1$

$$k\int_{0}^{2}\int_{0}^{2}(4-x-y)dxdy = 1 \Rightarrow k\int_{0}^{2}(6-2y)dy = 1 \Rightarrow k(8) = 1 \Rightarrow k = \frac{1}{8}$$

Before we find Expectation and variance, we find marginal distribution of X and Y. Marginal distribution of X is given by,

$$f(x) = \frac{1}{8} \int_0^2 (4 - x - y) dy = \frac{1}{8} (6 - 2x) = \frac{1}{4} (3 - x); 0 \le x \le 2$$

Marginal distribution of Y is given by,

$$f(y) = \frac{1}{8} \int_0^2 (4 - x - y) dx = \frac{1}{8} (6 - 2y) = \frac{1}{4} (3 - y); 0 \le y \le 2$$

Now, let us obtain Expectation.

$$E(x) = \int_0^2 x f(x) dx = \frac{1}{4} \int_0^2 x (3 - x) dx = \frac{5}{6}$$

$$E(y) = \int_0^2 y f(y) dx = \frac{1}{4} \int_0^2 y (3 - y) dy = \frac{5}{6}$$

To find variance, first we find $E(X^2)$ and $E(Y^2)$

$$E(X^2) = \int_0^2 x^2 f(x) dx = \frac{1}{4} \int_0^2 x^2 (3 - x) dx = 1$$

$$E(Y^2) = \int_0^2 y^2 f(y) dy = \frac{1}{4} \int_0^2 y^2 (3 - y) dy = 1$$

Variances are given as follows:

$$V(X) = E(X^2) - \{E(X)\}^2 = 1 - (\frac{5}{6})^2 = \frac{11}{36}$$

$$V(Y) = E(Y^2) - \{E(Y)\}^2 = 1 - (5/6)^2 = 11/36$$

We know that Cov(X,Y)=E(XY)-E(X)E(Y)

We have already found E(X) and E(Y). Now let us obtain E(XY).

$$E(XY) = \int_0^2 \int_0^2 xy f(y) dx dy = \frac{1}{8} \int_0^2 y \left[\int_0^2 x (4 - x - y) dx \right] dy = \frac{1}{8} \int_0^2 y \left(\frac{16}{3} - 2y \right) dy = \frac{2}{3}$$

Hence $Cov(X,Y) = \frac{2}{3} - (\frac{5}{6})(\frac{5}{6}) = -\frac{1}{36}$

15. X and Y have a bivariate distribution given by
$$P(X = X \cap Y = Y) = \frac{X + 3Y}{24}; (X, Y) = (1,1), (1,2), (2,1), (2,2). \text{ Find E(X), E(Y), V(X),}$$
 V(Y) and Cov(X,Y).

Answer:

First let us obtain marginal distribution of X and Y.

Marginal distribution of X is given by $P(X = x) = \sum_{k=1}^{2} \frac{x + 3y}{24} = \frac{x + 3.1}{24} + \frac{x + 3.2}{24} = \frac{2x + 9}{24}; x = 1,2$

Marginal distribution of Y is given by

$$P(Y = y) = \sum_{x=1}^{2} \frac{x+3y}{24} = \frac{1+3y}{24} + \frac{2+3y}{24} = \frac{3+6y}{24}$$
; $y = 1,2$

Now let us find the expectations.

$$E(X) = \sum_{x=1}^{2} XP(X = X) = \sum_{x=1}^{2} X \frac{2X + 9}{24}$$

$$= 1 \times \frac{2.1 + 9}{24} + 2 \times \frac{2.2 + 9}{24} = 1 \times \frac{11}{24} + 2 \times \frac{13}{24} = \frac{37}{24}$$

$$E(Y) = \sum_{y=1}^{2} Y(P(Y = Y)) = \sum_{y=1}^{2} Y \frac{3 + 6Y}{24}$$

$$= 1 \times \frac{3 + 6.1}{24} + 2 \times \frac{3 + 6.2}{24} = 1 \times \frac{9}{24} + 2 \times \frac{15}{24} = \frac{39}{24} = \frac{13}{8}$$

Before finding the variance, let us find $\mathsf{E}(\mathsf{X}^2)$ and $\mathsf{E}(\mathsf{Y}^2)$

$$E(X^{2}) = \sum_{x=1}^{2} x^{2} P(X = x) = \sum_{x=1}^{2} x^{2} \frac{2x+9}{24}$$
$$= 1^{2} \times \frac{2.1+9}{24} + 2^{2} \times \frac{2.2+9}{24} = 1 \times \frac{11}{24} + 4 \times \frac{13}{24} = \frac{63}{24} = \frac{21}{8}$$

$$E(Y^{2}) = \sum_{y=1}^{2} y^{2} P(Y = y) = \sum_{y=1}^{2} y^{2} \frac{3+6y}{24}$$

$$= 1^{2} \times \frac{3+6.1}{24} + 2^{2} \times \frac{3+6.2}{24} = 1 \times \frac{9}{24} + 4 \times \frac{15}{24} = \frac{69}{24} = \frac{23}{8}$$

$$V(X) = E(X^{2}) - \{E(X)\}^{2} = \frac{2^{1}}{8} - (\frac{3^{7}}{24})^{2} = 0.2483$$

$$V(Y) = E(Y^{2}) - \{E(Y)\}^{2} = \frac{2^{3}}{8} - (\frac{3^{3}}{8})^{2} = 0.2344$$

To find cov(X, Y), let us find E(XY)

$$E(XY) = \sum_{x=1}^{2} \sum_{y=1}^{2} xy P(X = x \cap Y = y) = \sum_{x=1}^{2} \sum_{y=1}^{2} xy \frac{x + 3y}{24}$$
$$= \sum_{x=1}^{2} x \left(\sum_{y=1}^{2} y \frac{x + 3y}{24}\right) = \sum_{x=1}^{2} x \left(1 \cdot \frac{x + 3 \cdot 1}{24} + 2 \frac{x + 3 \cdot 2}{24}\right)$$
$$= \sum_{x=1}^{2} x \left(\frac{3x + 15}{24}\right) = 1 \cdot \frac{3 \cdot 1 + 15}{24} + 2 \frac{3 \cdot 2 + 15}{24} = \frac{60}{24} = \frac{5}{2}$$

Hence, covariance

Cov(X, Y)=E(XY)-E(X)E(Y)
=
$${}^{5}/_{2} - [{}^{37}/_{24} \cdot {}^{13}/_{8}]$$

=-0.0052