Frequently Asked Questions

1. Define two dimensional or bivariate random variable.

Answer:

Let X and Y be two random variables defined on the same sample space S, then the function (X, Y) that assigns a point $R^2(=R\times R)$, is called a two dimensional random variable.

2. When can you say that the random variable is discrete?

Answer:

A two dimensional random variable is said to be discrete if it takes at most a countable number of points in $\ensuremath{\mathsf{R}}^2$

3. When can you say that the random variable is continuous?

Answer:

A two dimensional random variable is said to be continuous if it assumes all the values in R².

4. When is it said that the 2 random variables are jointly distributed?

Answer:

Two random variables X and Y are said to be jointly distributed if they are defined on the same probability space. The sample points consist of 2-tuples.

5. Define probability mass function.

Answer:

If (X, Y) is a two dimensional discrete random variable, then the joint discrete function of X, Y, also called joint probability mass function of X, Y denoted by $p_{X,Y}$ is defined as, $p_{XY}(x_i, y_i)=p(X=x_i, Y=y_i)$ for a value (x_i, y_i) of (X, Y) and $p_{XY}(x_i, y_i)=0$, otherwise.

6. Define distribution function.

Answer:

The distribution of two dimensional random variable (X, Y) is a real valued function F define for all real x and y by the relation $F_{XY}(x, y)=P(X \le x, Y \le y)$

7. Write the properties of distribution function.

Answer:

1. For the real numbers a_1 , b_1 , a_2 and b_2 , $P(a_1 < X \le b_1, a_2 < X \le b_2) = F_{XY}(b_1, b_2) + F_{XY}(a_1, a_2) - F_{XY}(a_1, b_2) - F_{XY}(b_1, a_2)$ Also F(x, y) is monotonic non decreasing function 2. $F(-\infty, y)=0=F(x, -\infty), F(+\infty, +\infty)=1$

3. If the density function f(x, y) is continuous at (x, y), $\frac{\partial^2 F}{\partial x \partial y} = f(x, y)$

8. Show that F(x, y) is monotonic non decreasing function.

Answer:

Let $a_1 < a_2$, $b_1 < b_2$ then

 $(X \le a_1, Y \le a_2) + (a_1 < X \le b_1, Y \le a_2) = (X \le b_1, Y \le a_2)$ and the events on LHS are mutually exclusive.

 $:: F(a_1, a_2) + P(a_1 < X \le b_1, Y \le a_2) = F(b_1, a_2)$

 $\Rightarrow F(b_1, a_2)-F(a_1, a_2)=P(a_1 < X \le b_1, Y \le a_2)$

:: $F(b_1, a_2) \ge F(a_1, a_2)$ [:: $P(a_1 < X \le b_1, Y \le a_2) \ge 0$)

Similarly, it follows that $F(a_1, b_2)$ - $F(a_1, a_2)$ = $P(X \le a_1, a_2 \le Y \le b_2)$

 \therefore F(a₁, b₂) \ge F(a₁, a₂), which shows that F(x, y) is monotonic non decreasing function.

9. Define probability density function using joint distribution function.

Answer:

From the joint distribution function, $F_{XY}(x, y)$ of bivariate continuous random variable, we get the joint probability density function by differentiation as follows.

$$f(x, y) = \frac{\partial^2 F}{\partial x \partial y} = \lim_{\delta x \to 0, \delta y \to 0} \frac{P(x \le X \le x + \delta x, y \le Y \le y + \delta y)}{\delta x \, \delta y}$$

10. Define probability density function in terms of probability function.

Answer:

The probability that the point (x, y) will lie in the infinitesimal rectangular region, of area dx dy is given by,

 $P(x-1/2dx \le X \le x+1/2dx, y-1/2dy \le Y \le y+1/2dy) = d F_{XY}(x, y)$ and is denoted by $f_{xy}(x, y)dx dy$, where $f_{XY}(x, y)$ is called the joint probability density function of X and Y.

11. When is it said that a given function is a probability mass function?

Answer:

To verify whether the given function is probability mass function or not, we check the following 2 conditions.

p(x, y)≥0, ∀x, y and $\Sigma_{x,y}p(x, y)$ =1

12. When is it said that a given function is a probability mass function?

Answer:

To verify whether the given function is probability density function or not, we check the following 2 conditions.

 $f(x, y) \ge 0, \forall x, y \text{ and } \int_{x,y} f(x, y) dx dy = 1$

13. In the random placement of 3 balls in three cells, describe the possible outcomes of the experiment. Let X_i denote the number of balls in cell i, i=1, 2, 3; and N, the number of cells occupied. Obtain the joint distribution of (X₁, N).

Answer:

a. Let the three balls be denoted by a, b and c. Then the possible outcomes of placing the three balls in three cells are as follows.

1.	а	b	С	10. ac b -	19.b ca -
2.	а	С	b	11. ac - b	20. b - ca
3.	b	а	С	12 ac b	21 b ca
4.	b	С	а	13. bc a -	22. c ab -
5.	С	а	b	14. bc - a	23. c - ab
6.	С	b	а	15 bc a	24 c ab
7.	ab	С	-	16. a bc -	25. abc
8.	ab	-	С	17. a - bc	26 abc -
9.	- 6	ab	С	18 a bc	27 abc

Each of these arrangements represents a sample event, i.e., a sample point. The sample space contains 27 points.

Let N denote the number of occupied cells. The favorable cases for N=1 are at numbers 25, 26 and 27, i.e., 3; for N=2 are at numbers 7 to 24, i.e., 18 and for N=3 are at numbers 1 to 6, i.e., 6. Accordingly the probability distribution of N is

 $P(N=1)={}^{3}/_{27}$; $P(N=2)={}^{18}/_{27}$ & $P(N=3)={}^{6}/_{27}$

Let X_1 denote the number of balls placed in the first cell. Then form the above table of sample point X1 can take values, 0, 1, 2 and 3.

 $P(X_1=0)={}^{8}/_{27}$; $P(X_1=1)={}^{12}/_{27}$; $P(X_1=2)={}^{6}/_{27}$ and $P(X_1=3)={}^{1}/_{27}$.

The joint distribution of N and X_1 can be obtained as follows:

 $P(N=1, X_1=0)=^{2}/_{27}$; $P(N=1, X_1=1)=0$; $P(N=1, X_1=2)=0$; $P(N=1, X_1=3)=^{1}/_{27}$;

 $\begin{array}{l} \mathsf{P}(\mathsf{N=2, X_{1}=0}) = {}^{6}\!/_{27}; \ \mathsf{P}(\mathsf{N=2, X_{1}=1}) = {}^{6}\!/_{27}; \ \mathsf{P}(\mathsf{N=2, X_{1}=3}) = 0; \\ \mathsf{P}(\mathsf{N=3, X_{1}=0}) = 0; \quad \mathsf{P}(\mathsf{N=3, X_{1}=1}) = {}^{6}\!/_{27}; \ \mathsf{P}(\mathsf{N=3, X_{1}=2}) = 0; \quad \mathsf{P}(\mathsf{N=3, X_{1}=3}) = 0; \\ \mathsf{The above probabilities are written in a tabular form to get joint distribution of N and X_{1} as follows. \end{array}$

N X ₁	1	2	3	Distribution of X_1
0	² / ₂₇	⁶ / ₂₇	0	⁸ / ₂₇
1	0	⁶ / ₂₇	⁶ / ₂₇	¹² / ₂₇
2	0	⁶ / ₂₇	0	⁶ / ₂₇
3	¹ / ₂₇	0	0	¹ / ₂₇
Distribution of N	³ / ₂₇	¹⁸ / ₂₇	⁶ / ₂₇	1

14. For the following bivariate probability distribution of X and Y find, P(X=1, Y=1), $P(X\le1,Y=2)$ and $P(X<3,Y\le4)$.

	Υ	1	2	3	4	5	6
Х							
0		0	0	¹ / ₃₂	² / ₃₂	² / ₃₂	³ / ₃₂
1		¹ / ₁₆	¹ / ₁₆	¹ / ₈	¹ / ₈	¹ / ₈	¹ / ₈
2		¹ / ₃₂	¹ / ₃₂	¹ / ₆₄	¹ / ₆₄	0	² / ₆₄

Answer:

 $\begin{array}{l} \mathsf{P}(\mathsf{X=1}, \mathsf{Y=1}) = {}^{1}\!\!/_{16} \\ \mathsf{P}(\mathsf{X\leq1}, \mathsf{Y=2}) = \mathsf{P}(\mathsf{X=0}, \mathsf{Y=2}) + \mathsf{P}(\mathsf{X=1}, \mathsf{Y=2}) = 0 + {}^{1}\!\!/_{16} = {}^{1}\!\!/_{16} \\ \mathsf{P}(\mathsf{X<3}, \mathsf{Y\leq4}) = \mathsf{P}(\mathsf{X=0}, \mathsf{Y\leq4}) + \mathsf{P}(\mathsf{X=1}, \mathsf{Y\leq4}) + \mathsf{P}(\mathsf{X=2}, \mathsf{Y\leq4}) \\ = (0 + 0 + {}^{1}\!\!/_{32} + {}^{2}\!\!/_{32}) + ({}^{1}\!\!/_{16} + {}^{1}\!\!/_{8} + {}^{1}\!\!/_{8}) + ({}^{1}\!\!/_{32} + {}^{1}\!\!/_{54} + {}^{1}\!\!/_{64}) = {}^{9}\!\!/_{16} \end{array}$

15. If X and Y are two random variables having joint density function $f(x, y) = \frac{1}{6}(6-x-y); 0 \le x < 2, 2 \le y < 4$. Find $P(X < 1 \cap Y < 3)$ and P(X+Y < 3).

Answer:

We can write,

$$P(X < 1 \cap Y < 3) = \int_{-\infty}^{1} \int_{-\infty}^{3} f(x, y) dx dy = \frac{1}{8} \int_{0}^{1} \int_{2}^{3} (6 - x - y) dx dy = \frac{3}{8}$$

To find P(X+Y<3), let us find the limits for X and Y. X+Y<3 \Rightarrow Y<3-X. The minimum value taken by Y=2. Hence X cannot be greater than 1.

$$P(X + Y < 3) = \int_{0}^{1} \int_{2}^{3-x} f(x, y) dx dy = \frac{1}{8} \int_{0}^{1} \int_{2}^{3} (6 - x - y) dx dy = \frac{5}{24}$$