Summary

 Let (X, Y) be a discrete bivariate random variable. Then, the conditional discrete density function or the conditional probability mass function of X, given Y=y denoted by p_{X|Y}(x|y),

is defined as $p_{X|Y}(x \mid y) = \frac{P(X = x, Y = y)}{P(Y = y)}$ provided P(Y=y)≠0

- A necessary and sufficient condition for the discrete random variable X and Y to be independent is P(X=xi, Y=yi)=P(X=xi)P(Y=yj) for all values of (xi, yj) of (X, Y) i.e. the joint probability mass function can be expressed as the product of the conditional probability mass function.
- From the knowledge of joint distribution function F_{XY}(x, y), it is possible to obtain the individual distribution functions F_X(x) and F_Y(y) which are termed as marginal distribution function of X and Y respectively with respect to the joint distribution function F_{XY}(x, y).
- If we know the joint pdf (pmf) f_{XY}(x, y) of two random variables X and Y, we can obtain the individual distribution of X and Y in the form of their marginal pdfs (pmfs) f_X(X) and f_Y(y). However, the converse is not true. That is, from the marginal distributions of two jointly distributed random variables, we cannot determine the joint distribution of these two random variables.
- Suppose the variables are independent, then we can write joint pdf (pmf) as the product of their marginal pdfs(pmfs)
- For a bivariate random variable (X, Y), the joint distribution function F_{XY}(x,y) for any real numbers x and y is given by F_{XY}(x, y)=P(X≤x, Y≤y).
- The conditional probability density function of Y given X for bivariate random variable (X, Y) which are jointly continuously distributed is defined as follows, for two real numbers x and y f_{Y|X}(y|x)=[∂]/_{∂y}[F_{Y|X}(y/x)]