Summary

• Conditional distribution of X for fixed Y is given by, $\left(\left(\left(-\frac{\sigma}{2}\right)^{2}\right)^{2}\right)^{2}$

$$= \frac{1}{\sqrt{2\pi\sigma_1}\sqrt{(1-\rho^2)}} e^{-\frac{1}{2(1-\rho^2)\sigma_1^2} \left[(x - \left\{ \frac{\mu_1 + \rho \frac{\sigma_1}{\sigma_2} (y - \mu_2) \right\} \right]} \right]} .$$
 i.e.
(X | Y = y) ~ $N \left[\mu_1 + \rho \frac{\sigma_1}{\sigma_2} (y - \mu_2), (1-\rho^2)\sigma_1^2 \right]$

• Similarly, the conditional distribution of Y given X is equal to X is given by

$$(Y \mid X = x) \sim N \left[\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x - \mu_1), (1 - \rho^2) \sigma_2^2 \right]$$

- If X and Y are standard normal variates with correlation coefficient ρ between them, then the correlation coefficient between X² and Y² is given by ρ^2 .
- If X and Y are standard normal variates with coefficient of correlation ρ, then Q=(X²+2ρXY+Y²)/(1-ρ²) is distributed like a chi-square, i.e. as that of the sum of the squares of standard normal variates.
- For a Bivariate normal distribution with $f(x, y) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}(x^2-2\rho xy+y^2)}$, the
 - moments obey the recurrence relation $\mu_{rs} = (r + s - 1)\rho\mu_{r-1,s-1} + (r - 1)(s - 1)(1 - \rho^2)\mu_{r-2,s-2}$
- If X and Y are independent standard normal variates, then the mgf of XY is given by, $M_{XY}(t) = (1-t^2)^{-1/2}$