
Summary 
 

 Conditional distribution of X for fixed Y is given by, 
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 Similarly, the conditional distribution of Y given X is equal to X is given by 
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 If X and Y are standard normal variates with correlation coefficient ρ between them, 
then the correlation coefficient between X2 and Y2 is given by ρ2. 

 If X and Y are standard normal variates with coefficient of correlation ρ, then 
Q=(X2+2ρXY+Y2)/(1-ρ2) is distributed like a chi-square, i.e. as that of the sum of the 
squares of standard normal variates. 

 For a Bivariate normal distribution with 
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moments obey the recurrence relation 
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 If X and Y are independent standard normal variates, then the mgf of XY is given by, 
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