Frequently Asked Questions

1. Define bivariate normal distribution with parameters u4, yo, G4, 02and p?
Answer:
Random variable (X, Y) is said to follow bivariate normal distribution with parameters p4, pa,

04, 0z2and p, if pdf is given by,
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2. Write the marginal pdf of X in a bivariate normal distribution.
Answer:
Its marginal pdf of X is given by,
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3. Write the marginal pdf of Y in a bivariate normal distribution.
Answer:
Its marginal pdf of Y is given by,

)= o)

o,V 21

4. Derive the conditional distribution of X for fixed Y of bivariate normal distribution.
Answer:

Conditional distribution of X for fixed Y is given by,
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Which is the probability function of a univariate normal distribution with mean and variance,
which is given by,
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Hence, conditional distribution of X for fixed Y is also normal given by
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5. Write the mean and variance of conditional distribution of X for fixed Y in a bivariate
normal distribution.

Answer:

Mean and variance of conditional distribution of X for fixed Y is given by,
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6. Obtain the conditional distribution of Y for fixed X of bivariate normal distribution.
Answer:
The conditional distribution of Y for fixed X is given by,
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Thus, conditional distribution of Y for fixed X is also normal and given by,
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7. Write the mean and variance of conditional distribution of Y for fixed X in a bivariate
normal distribution.
Answer:
Mean and variance of conditional distribution of Y for fixed X is given by,
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8. What happens when p=0 in conditional distribution of Y given X?

Answer:

For p=0, the conditional variance V(Y|X) is equal to the marginal variance o,?> and the
conditional mean of E(Y|X) is equal to the marginal mean u, and the two variables become
independent.
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9. Show that if X and Y are standard normal variates with correlation coefficient p between
them, then the correlation coefficient between X? and Y? is given by p?.
Answer:
Given X and Y are two standard normal variates. Hence we have E(X)=E(Y)=0
V(X)= E(X?)= 1=V(Y)=E(Y?)
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Now, consider the coefficient of correlation,
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E(X,*)=Coefficient of (t,*4) in M(ts,t,)

2p2+1_(1><1)_ 2

R o vy B

3
3




Therefore, the correlation coefficient between X? Y? is given by p?.

10. Write moment generating function when (X,Y)~BVN(O0, 0, 1, 1, p).
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Answer: If (X,Y)~BVN(0, 0, 1, 1, p) then M, (t,,t,) =e?

11.If X and Y are standard normal variates with coefficient of correlation p, then show that,
Q=(X*+2pXY+Y?)/(1-p?) is distributed like a chi-square, i.e. as that of the sum of the
squares of standard normal variates.

Answer:

Consider the mgf of Q
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Which is the mgf of Chi-square variate with n(=2) degrees of freedom.
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12. Show that for a bivariate normal distribution with f (X, y) = ———e *¢9)
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, the moments obey the recurrence relation
Hes = (r +S - 1)p:ur—1,s—1 + (r - 1)(5 - 1)(1 - pz):ur—Z,s—Z .
Answer:
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We know that mgf of above distribution is given by, M = M(t,, t,) = e?

oM oM
—— = M(t, + pt,), — = M(t, + pt,),

at, ot,

M 0 (oM 0

otot, oy (atzj 8t1( (t, +p l)) o+, + pt)(E + pt,)
0*°M oM oM

oot - p la_tl Pt 5_t2
=Mp +(t, + pt)(t, + pt, )M — pt,(t, + pt )M — pt,(t, + pt )M
= M(tt, + p - p*tt,)
=Mp + (L - p* )Mt L,



0°M oM M 2
", =pt,—+ pt, —+Mp+ Q- Mtt, — — - —(*
oo, PL ot PL, p+ A - p ML, ™*)

2
T L
rs

0 0 tll’— 2—
Therefore, (*) gives ;;;urs (r—DI(s - D!
) 0 0 ) 1ts+1
=p;§r r,S, +p§;Sﬂrs r,s, Z;ZO ,S, +(-p )ggﬂrs e
r-1 s-1
1 2

Equating the coefficient of on both sides and simplifying we get,
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13.If moments obey the recurrence
ts =(C+s=Dpp; o+ -D(s-DA- p*)pt,_,_, obtain py and ps
Answer:
We have given g, =(r+s—-Dpu_, .+ -D(-DA- p)i_, s, and pe=1 and
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14. If moments obey the recurrence
=0 +s-Dpu,_,  +-D(-DA- ,02),ur72,572 obtain odd order central

moment, i.e. when r+s is odd
Answer:

We have given s, = (r +s =Dpp, 1o +(F =D -~ p), 5,
We know that pg1=p+10=0

Also Ho3= P30=0
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We get y;,1=0 and p3,=0

If r+s is odd, so is (r-1)+(s-1), (r-2)+(s-2) and so on

and since Hgz= M30, M12= M21, and so on we finally get
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15. If X and Y are independent standard normal variates, obtain the mgf of XY.
Answer:

We have by definition M, (t) = E(€™") = f’ f e™f(x,y)dxdy
Since X and Y are independent standard normal variates, their joint pdf f(x,y) is given by,
f(x,y) = 21 e X 2%V 20 < (X,y) < ®

v

1 o o —E(XZ—theryz)
"My = —LJ e? dxdy

27 -



( x?2 2txy y?
J‘ J' 2(1 )\ 1/ 7@ t2)as{a-ty) l/(l t?) dxdy

If (U,V)~BVN(O,O,01 , 02 ,p) then we have
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On comparison we get
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