
Frequently Asked Questions 
 

 
1. Define bivariate normal distribution with parameters μ1, μ2, σ1, σ2 and ρ? 
Answer: 
Random variable (X, Y) is said to follow bivariate normal distribution with parameters μ1, μ2, 
σ1, σ2 and ρ, if pdf is given by, 
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2. Write the marginal pdf of X in a bivariate normal distribution. 
Answer:  
Its marginal pdf of X is given by,  
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3. Write the marginal pdf of Y in a bivariate normal distribution. 
Answer:  
Its marginal pdf of Y is given by,  
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4. Derive the conditional distribution of X for fixed Y of bivariate normal distribution. 
Answer: 
Conditional distribution of X for fixed Y is given by,  
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Which is the probability function of a univariate normal distribution with mean and variance, 
which is given by, 
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Hence, conditional distribution of X for fixed Y is also normal given by  
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5. Write the mean and variance of conditional distribution of X for fixed Y in a bivariate 

normal distribution. 
Answer: 
Mean and variance of conditional distribution of X for fixed Y is given by, 
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6. Obtain the conditional distribution of Y for fixed X of bivariate normal distribution. 
Answer: 
The conditional distribution of Y for fixed X is given by, 
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Thus, conditional distribution of Y for fixed X is also normal and given by,  
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7. Write the mean and variance of conditional distribution of Y for fixed X in a bivariate 
normal distribution. 

Answer: 
Mean and variance of conditional distribution of Y for fixed X is given by, 
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8. What happens when ρ=0 in conditional distribution of Y given X? 
Answer:  
For ρ=0, the conditional variance V(Y|X) is equal to the marginal variance σ2

2 and the 
conditional mean of E(Y|X) is equal to the marginal mean μ2 and the two variables become 
independent. 
 

9. Show that if X and Y are standard normal variates with correlation coefficient ρ between 
them, then the correlation coefficient between X2 and Y2 is given by ρ2. 

Answer:  
Given X and Y are two standard normal variates.  Hence we have E(X)=E(Y)=0 
V(X)= E(X2)= 1=V(Y)=E(Y2) 
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Now, consider the coefficient of correlation, 
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Where  
E(X1

2X2
2)=Coefficient of (t1

2/2!).(t2
2/2!) in M(t1,t2) 

              =2ρ2+1   
E(X1

4)=Coefficient of (t1
4/4!)  in M(t1,t2)=3 

E(X2
4)=Coefficient of (t2

4/4!)  in M(t1,t2)=3 
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Therefore, the correlation coefficient between X2 Y2 is given by ρ2.  
 

10. Write moment generating function when (X,Y)~BVN(0, 0, 1, 1, ρ). 

Answer: If (X,Y)~BVN(0, 0, 1, 1, ρ) then 
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11. If X and Y are standard normal variates with coefficient of correlation ρ, then show that, 
Q=(X2+2ρXY+Y2)/(1-ρ2) is distributed like a chi-square, i.e. as that of the sum of the 
squares of standard normal variates. 

Answer: 
Consider the mgf of Q  
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Put x√(1-2t)=u and y√(1-2t)=v 
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Which is the mgf of Chi-square variate with n(=2) degrees of freedom. 
 

12. Show that for a bivariate normal distribution with
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Answer: 

We know that mgf of above distribution is given by, 
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Therefore, (*) gives 
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Equating the coefficient of 
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on both sides and simplifying we get, 
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13. If moments obey the recurrence 
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Answer: 

We have given 22
2

11 1111   srsrrs srsr ,, ))()(()(   and μ00=1 and 

μ11 =ρσ1 σ2=ρ 
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14. If moments obey the recurrence 
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moment, i.e. when r+s is odd 
Answer: 

We have given 22
2
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We know that μ01=μ10=0 
Also μ03= μ30=0 
μ12=2ρμ0,1+0=0 
μ23=4ρμ1,2+1.2(1-ρ2)μ0,1=0 
Similarly,-+ 
We get μ2,1=0 and μ3,2=0 
If r+s is odd, so is (r-1)+(s-1), (r-2)+(s-2) and so on 
and since μ03= μ30, μ12= μ21, and so on we finally get 
μrs=0 of r+s=0 
 
15. If X and Y are independent standard normal variates, obtain the mgf of XY. 
Answer: 

We have by definition  
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Since X and Y are independent standard normal variates, their joint pdf f(x,y) is given by, 
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If (U,V)~BVN(0,0,σ1
2, σ2

2,ρ) then we have 
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On comparison we get,  
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