Frequently Asked Questions

1. Write the situations, where binomial distribution can be used. **Answer:**

Binomial distribution can be used, when considering entities which have two states, boy-girl, head-tail, working-broken and so on which are classified as success and failure.

2. Give any 3 examples of trinomial variate.

Answer:

- 1. A bicycle has three principal states: Parked, Ridden or Pushed.
- 2. The traffic lights can be Red, Green or Changing.
- 3. There was brief period when ternary computers were thought worth exploring: voltage would have been positive, zero or negative.

3. Differentiate between binomial and trinomial distribution.

Answer:

Binomial distribution has 2 outcomes, which can be termed as success and failure. For example, tossing a coin a head turns up or a tail turns up. Whereas, as the name suggests, the trinomial distribution has 3 outcome, like the traffic lights can be Red, Green or Changing.

4. Define trinomial distribution.

Answer:

Suppose we define the sample space consists of all sequences of length n such that $\omega = (i_1, i_2, ..., i_n)$ where each i_j take values 1, 0 and -1 with probabilities $P(i_j=1)=p$, $P(i_j=0)=\theta$, $P(i_j=-1)=1-p-\theta$.

If a specific sequence of ω has x 'successes' (1's), and y 'failures' (0's)

Let X be the number of trails where 1 occurs, and Y be the number of trials where 0 occurs. The joint distribution of pare (X, Y) is called the trinomial distribution.

5. Define trinomial distribution using pmf.

Answer:

Three random variables X, Y are said to have trinomial distribution with parameters, n, p_1 , and p_2 if its pmf is given by,

$$P(X = x, Y = y) = \frac{n!}{x! y! z!} p_1^x p_2^y (1 - p_1 - p_2)^{n - x - y}$$

6. Obtain joint pmf of a trinomial distribution.

Answer:

The sample space consists of all sequences of length n such that $\omega = (i_1, i_2, ..., i_n)$ where each i_j take values 1, 0 and -1 with probabilities $P(i_j=1)=p$, $P(i_j=0)=\theta$, $P(i_j=-1)=1-p-\theta$. If a specific sequence of ω has x 'successes'(1's), and y 'failures' (0's) then $P(\omega)=p^*\theta^y(1-p-\theta)^{n-x-y}$

There are $\binom{n}{x}\binom{n-x}{y} = \frac{n!}{x! y! (n-x-y)!}$ different sequences with x successes and y

failures. Hence $P(X = x, Y = y) = \frac{n!}{x! y! (n - x - y)!} p^x \theta^y (1 - p - \theta)^{n - x - y}$

7. Why the distribution is known as trinomial distribution? **Answer:**

The name of the distribution comes from the trinomial expansion $(a+b+c)^n = [a+(b+c)]^n$

$$= \sum_{x=0}^{n} {n \choose x} a^{x} (b+c)^{n-x} = \sum_{x=0}^{n} \sum_{y=0}^{n-x} {n \choose x} {n-x \choose y} a^{x} b^{y} c^{n-x-y}$$
$$= \sum_{x=0}^{n} \sum_{y=0}^{n-x} \frac{n!}{x! \, y! \, (n-x-y)!} a^{x} b^{y} c^{n-x-y}$$

8. Write mean if (X,Y)~trinomial (n, p, θ) **Answer:**

The marginal distributions of X and Y are just X~ Binomial(n,p) and Y~ Binomial(n, θ). This follows the fact that X is the number of 'successes' in n independent trials with p being the probability of 'successes' in each trial. Similar argument works with Y Therefore, E(X)=np, E(Y)=n\theta

9. Write variance if (X,Y)~trinomial (n, p, θ) .

Answer:

The marginal distributions of X and Y are just X~ Binomial (n,p) and Y~ Binomial(n, θ). This follows the fact that X is the number of 'successes' in n independent trials with p being the probability of 'successes' in each trial. Similar argument works with Y. Therefore, V(X)=np(1-p) and V(Y)=n θ (1- θ)

10. If Y = y, then show that the conditional distribution of X|(Y = y) is Binomial (n-1, p/1- θ) **Answer:**

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
$$= \frac{\frac{n!}{x! y! (n - x - y)!} p^{x} \theta^{y} (1 - p - \theta)^{n - x - y}}{\frac{n!}{y! (n - y)!} \theta^{y} (1 - \theta)^{n - y}}$$
$$= \binom{n - 1}{x} \left(\frac{p}{1 - \theta}\right)^{x} \left(1 - \frac{p}{1 - \theta}\right)^{n - y - x}$$

For x=0, 1, 2, ..., n-y. Hence X|(Y = y) is Binomial (n-1, $p/1-\theta$)

11. Obtain covariance of trinomial distribution. **Answer:**

Let (X,Y)~trinomial (n, p, θ)

We know that for any two random variables, E[XY]=E[Y.E(X|Y)]. And according to the property 2, X|(Y = y) is Binomial (n-1, $p_{1-\theta}$) and hence E[X|Y=y]= (n-y).[$p_{1-\theta}$] and thus $E[X|Y]=(n-Y).[p_{1-\theta}]$. Hence

$$E[XY] = E\left[Y \times (n-Y)\frac{p}{1-\theta}\right] = \frac{p}{1-\theta}E(nY-Y^2)$$
$$= \frac{p}{1-\theta}(n^2\theta - n\theta(1-\theta) - n^2\theta^2) = \frac{p \times n\theta}{1-\theta}[n-1-\theta(n-1)]$$
$$= \frac{p \times n\theta}{1-\theta}[(1-\theta)(n-1)] = n(n-1)p\theta$$

Therefore,

 $Cov(X,Y)=E(XY)-E(X)E(Y)=n(n-1)p\theta-n^2p\theta=-np\theta$

12. Find correlation coefficient of Trinomial distribution by assuming covariance and variances.

Answer:

Let (X,Y)~trinomial (n, p, θ). We know that E(X)=np(1-p) and V(Y)=n θ (1- θ). Also Cov(X,Y)=-np θ

Hence
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{-np\theta}{\sqrt{n^2p(1-p)\theta(1-\theta)}} = -\left(\frac{p\theta}{(1-p)(1-\theta)}\right)^{1/2}$$

13. If (X,Y)~Trinomial(n, p, θ), then find coefficient of correlation of the distribution. **Answer:**

We know that
$$\rho_{XY} = \frac{Cov(X, Y)}{\sqrt{V(X)V(Y)}}$$

The marginal of x and Y are nothing by Binomial variates. Hence E(X)=np(1-p) and $V(Y)=n\theta(1-\theta)$.

We know that for any two random variables, E[XY]=E[Y.E(X|Y)]. And according to the property 2, X|(Y = y) is Binomial (n-1, $p/_{1-\theta}$) and hence $E[X|Y=y]=(n-y).[p/_{1-\theta}]$ and thus $E[X|Y]=(n-Y).[p/_{1-\theta}]$. Hence

$$E[XY] = E\left[Y \times (n-Y)\frac{p}{1-\theta}\right] = \frac{p}{1-\theta}E(nY-Y^2)$$
$$= \frac{p}{1-\theta}(n^2\theta - n\theta(1-\theta) - n^2\theta^2) = \frac{p \times n\theta}{1-\theta}[n-1-\theta(n-1)]$$
$$= \frac{p \times n\theta}{1-\theta}[(1-\theta)(n-1)] = n(n-1)p\theta$$

Therefore,

 $Cov(X,Y)=E(XY)-E(X)E(Y)=n(n-1)p\theta-n^2p\theta=-np\theta$

Hence
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{-np\theta}{\sqrt{n^2p(1-p)\theta(1-\theta)}} = -\left(\frac{p\theta}{(1-p)(1-\theta)}\right)^{1/2}$$

14. Write the generalized form of trinomial distribution.

Answer:

Now suppose that there are k outcomes possible at each of the n independent trials. Denote the outcomes A_1, A_2, \ldots, A_k and the corresponding probabilities p_1, \ldots, p_k where $\Sigma_j p_j=1$, j=1, 2, ...,k. Let X_j count the number of A_j occurs. Then

$$P(X_{1} = x_{1}, ..., X_{k-1} = x_{k-1}) = \frac{n!}{x_{1}! ... x_{k-1}! (n - \sum_{j=1}^{k-1} x_{j})!} p_{1}^{x_{1}} p_{2}^{x_{2}} ... p_{k-1}^{x_{k-1}} p_{k}^{n - \sum_{j=1}^{k-1} x_{j}}, \text{ where } x_{1}, x_{2},$$

..., x_{k-1} are non-negative integers with $\Sigma_j x_j \le n$

15. In a recent three-way election for a large country, candidate A received 20% of the votes, candidate B received 30% of the votes, and candidate C received 50% of the votes. If six voters are selected randomly, what is the probability that there will be exactly one supporter for candidate A, two supporters for candidate B and three supporters for candidate C in the sample?

Answer:

Since we're assuming that the voting population is large, it is reasonable and permissible to think of the probabilities as unchanging once a voter is selected for the sample.

Hence, we can use trinomial distribution to find the probability. i.e., we can write the pmf as,

$$P(X = x, Y = y, Z = z) = \frac{n!}{x! y! z!} p_1^x p_2^y p_3^z$$
, where x+y+z=n and p₁+p₂+p₃=1.

Here p₁=0.2, p₂=0.3 and p₃=0.5 $P(X = 1, Y = 2, Z = 3) = \frac{6!}{1!2!3!} (0.2)^1 (0.3)^2 (0.5)^3 = 0.135$