Frequently Asked Questions

1. What do you mean by moments? Answer:

The characteristics of a frequency distribution are described by its moments. The rth moment of a set of values about any constant is the mean of the rth powers of the deviations of the values from the constant.

2. Define rth raw moment.

Answer:

If X is a continuous random variable, then rth raw moment is given by, Mr' = E(X')

If the continuous random variable X has pdf f(x), then $\mu_r' = \int x^r f(x) dx$

3. Define rth central moment.

Answer:

If X is a continuous random variable, then rth central moment is given by,

$$\mu_r = E[X - E(X)]^r = \int_{X} [x - E(X)]^r f(x) dx$$

4. Write the conditions for existence of moments.

Answer:

E(|X|) always exists in the extended real numbers $R \equiv R \cup \{\infty\} \cup \{-\infty\}$ and $E(|X|) \in [0,\infty]$; i.e., either E(|X|) is a non-negative real number or $E(|X|) = \infty$.

- E(X) exists and is finite $\Leftrightarrow E(|X|) < \infty$.
- $E(|X|) < \infty \Rightarrow |E(X)| \le E(|X|) < \infty$.
- If $1 \le r \le s$, then $E(|X|^s) < \infty \Rightarrow E(|X|^r) < \infty$.
- 5. If $E(|X|^s) < \infty$ then prove that $E(|X|^r) < \infty$. Answer:

Consider $\int_{-\infty}^{\infty} |x|^r f(x) dx = \int_{-1}^{1} |x|^r f(x) dx + \int_{|x|>1} |x|^r f(x) dx$ If r<s, then $|x|^r < |x|^s$, for |x|>1Therefore $\int_{-\infty}^{\infty} |x|^r f(x) dx \le \int_{-1}^{1} |x|^r f(x) dx + \int_{|x|>1} |x|^s f(x) dx$ $\leq \int_{-1}^{1} f(x) dx + \int_{|x|>1} |x|^{s} f(x) dx$

Since for
$$-1 < x < 1$$
, $|x|' < 1$

$$\int_{-\infty}^{\infty} |x|^r f(x) dx \le 1 + \int_{|x|>1} |x|^s f(x) dx < \infty$$

$$\Rightarrow E(|X|^r) \text{ exists for all } 1 \le r \le s$$

6. Show that converse of the result If $1 \le r \le s$, then $E(|X|^s) < \infty \Rightarrow E(|X|^r) < \infty$ is not true. Answer:

We prove this with an example. Let X be a random variable with pdf

 $F(x) = 2/x^3$, x≥1 = 0 x<1

We have
$$= 2 \int_{1}^{\infty} x^{-2} dx = \left| \frac{-2}{x} \right|_{1}^{\infty} = 2$$

$$E(X^{2}) = \int_{1}^{\infty} x^{2} f(x) dx = 2 \int_{1}^{\infty} x^{-1} dx = \left\| \mathbf{Og} \, \mathbf{X} \right\|_{1}^{\infty} = \infty$$

Thus for the above distribution, 1st order moment exists but 2nd order moment does not exist.

7. Give the relationship between raw and central moments. **Answer:**

The relation between raw and central moments is given by the expression, $Mr = \mu_r \cdot C_1 \mu_{r-1} \cdot \mu_1 \cdot C_2 \mu_{r-2} \cdot \mu_1 \cdot C_2 \dots + (-1)^{n_1 \cdot r}$

8. Write 2^{nd} , 3^{rd} and 4^{th} central moments in terms of raw moments.

Answer: $\mu_2 = \mu_2 - \mu_1^2$

 $\mu_{2}^{\mu_{2}} = \mu_{2}^{\mu_{2}} \cdot \beta_{1}^{\mu_{1}} + 2\mu_{1}^{\mu_{3}} \\ \mu_{4}^{\mu_{4}} = \mu_{4}^{\mu_{4}} \cdot 4\mu_{3}^{\mu_{1}} \cdot \mu_{1}^{\mu_{4}} + 6\mu_{2}^{\mu_{2}} \cdot \mu_{1}^{\mu_{2}} \cdot 3\mu_{1}^{\mu_{4}}$

9. Write the uses of first 4 moments.

Answer:

Uses of first four moments are,

- The first moment about zero is the arithmetic mean
- The second central moment is the variance of the distribution
- The third central moment is a measure of skewness
- The fourth central moment is a measure of kurtosis.
- 10. Write the measure of skewness and how to interpret it? **Answer:**

The measure of skewness is given by, $\beta_1 = \frac{\mu_3^2}{\mu_2^3}$

As β_1 is always positive we use the sign of μ_3 to decide whether the distribution is positively skewed or negatively skewed. If μ_3 is positive, the distribution is positively skewed and if μ_3 is negative, the distribution is negatively skewed and if $\mu_3 = 0$ then the distribution is symmetric.

11. Write the measure of kurtosis and how to interpret it? **Answer:**

The measure of kurtosis is given by, $\beta_2 = \frac{\mu_4}{\mu_2^2}$

 β_2 gives the peak or flatness of the distribution. That is if $\beta_2 <3$, the distribution is platykurtic, if $\beta_2 >3$ the distribution is leptokurtic and if $\beta_2 =3$ then the distribution has normal curve.

12. What do you mean by quantiles? **Answer:**

Some *q*-quantiles have special names

• The 2-quantile is called the median

- The 3-quantiles are called tertiles or terciles \rightarrow T
- The 4-quantiles are called quartiles $\rightarrow Q$
- The 5-quantiles are called quintiles \rightarrow QU
- The 6-quantiles are called sextiles \rightarrow S
- The 10-quantiles are called deciles \rightarrow D
- The 12-quantiles are called duo-deciles \rightarrow Dd
- The 20-quantiles are called vigintiles \rightarrow V
- The 100-quantiles are called percentiles $\rightarrow P$
- The 1000-quantiles are called permiles \rightarrow Pr
- 13. How to find median of a distribution?

Answer:

If a continuous random variable X has probability mass function f(x) and if median of the

distribution is taken as M, then
$$\int_{-\infty}^{M} f(x) dx = \int_{M}^{\infty} f(x) dx = \frac{1}{2}$$

Thus solving
$$\int_{-\infty}^{M} f(x) dx = \frac{1}{2}$$
 or $\int_{M}^{\infty} f(x) dx = \frac{1}{2}$ for M, we get the value of median.

14. How to find quartiles of a distribution?

Answer:

Since quartiles divide the distribution into 4 equal parts, we have 3 quartiles, Q_1 , Q_2 and Q_3 and are given by the equations,

$$\int_{-\infty}^{Q_1} f(x) dx = \frac{1}{4}, \ \int_{-\infty}^{Q_2} f(x) dx = \frac{1}{2} and \ \int_{-\infty}^{Q_3} f(x) dx = \frac{3}{4}$$

15. How to find deciles and percentiles?

Answer:

As deciles divide the distribution in to 10 equal parts, we have 9 deciles and ith decile is

given by the equation,
$$\int_{-\infty}^{D_i} f(x) dx = \frac{i}{10}$$
, $i = 1, 2, \dots, 9$

Similarly percentiles divide the distribution into 100 equal parts, we have 99 percentiles and i^{th} percentile is given by the equation,

$$\int_{-\infty}^{P_i} f(x) dx = \frac{i}{100}, i = 1, 2, \dots, 99$$