Frequently Asked Questions

1. Define marginal distribution of discrete bivariate random variable.

Answer:

For discrete bivariate random variable, the marginal probability distribution is given by,

 $P(X=x)=\Sigma_y P(X=x, Y=y)$ $P(Y=y)=\Sigma_x P(X=x, Y=y)$

2. Define marginal distribution of continuous bivariate random variable.

Answer:

For continuous bivariate random variable, the marginal probability distribution is given by,

$$f(x) = \int_{y} f(x, y) dy$$
$$f(y) = \int_{x} f(x, y) dx$$

3. Define conditional probability function for discrete bivariate random variable. **Answer:**

Let (X, Y) be a discrete bivariate random variable. Then, the conditional discrete density function or the conditional probability mass function of X, given Y=y denoted by $p_{X|Y}(x|y)$, is

defined as
$$p_{X|Y}(x \mid y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
 provided P(Y=y) $\neq 0$

4. Define conditional probability function for continuous bivariate random variable. **Answer:**

Let (X, Y) be continuous bivariate random variable. Then the conditional density function or the conditional probability function of X, given Y denoted by $f_{X|Y}(x|y)$, is defined as

$$f_{X|Y}(x \mid y) = \frac{f(x, y)}{f(y)}$$
 provided $f(y) \neq 0$

5. For the joint probability distribution of 2 random variables X and Y given below. Find the marginal distribution of X and Y. Also find the Conditional distribution of X given the value of Y=1 and that of Y given X=2.

Y	1	2	3	4
1	⁴ / ₃₆	³ / ₃₆	² / ₃₆	¹ / ₃₆
2	¹ / ₃₆	³ / ₃₆	³ / ₃₆	² / ₃₆
3	⁵ / ₃₆	¹ / ₃₆	¹ / ₃₆	¹ / ₃₆
4	1/ ₃₆	² / ₃₆	¹ / ₃₆	⁵ / ₃₆

Answer:

The marginal distribution of X is defined as $P(X=x)=\Sigma_{y}P(X=x, Y=y)$ $\therefore P(X=1)=\Sigma_{y}P(X=1, Y=y)$ =P(X=1, Y=1)+P(X=1, Y=2) + P(X=1, Y=3)+P(X=1, Y=4) $=^{4}/_{36}+^{3}/_{36}+^{2}/_{36}+^{1}/_{36}=^{10}/_{36}$ Similarly $P(X=2)=\Sigma_{y}P(X=2, Y=y)=^{9}/_{36}$ $P(X=3)=\Sigma_{y}P(X=3, Y=y)=^{8}/_{36}$ $P(X=4)=\Sigma_{y}P(X=4, Y=y)=^{9}/_{36}$ Similarly uses obtain the meaning distribution of Y

Similarly we can obtain the marginal distribution of Y.

Marginal distribution of X

x	1	2	3	4
P(X=x)	¹⁰ / ₃₆	⁹ / ₃₆	⁸ / ₃₆	⁹ / ₃₆

Marginal Distribution of Y

у	1	2	3	4
P(Y=y)	¹⁰ / ₃₆	⁹ / ₃₆	⁸ / ₃₆	⁹ / ₃₆

6. For the joint probability distribution of 2 random variables X and Y given below. Find the Conditional distribution of X given the value of Y=1 and that of Y given X=2.

Y	1	2	3	4
Х				
1	⁴ / ₃₆	³ / ₃₆	² / ₃₆	¹ / ₃₆
2	¹ / ₃₆	³ / ₃₆	³ / ₃₆	² / ₃₆
3	⁵ / ₃₆	¹ / ₃₆	¹ / ₃₆	¹ / ₃₆
4	¹ / ₃₆	² / ₃₆	¹ / ₃₆	⁵ / ₃₆

Answer:

Conditional probability function of X given Y is defined as follows. P(X = x, Y = y)

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

$$P(X = 1 \mid Y = 1) = \frac{P(X = 1, Y = 1)}{P(Y = 1)} = \frac{4/36}{11/36} = \frac{4}{11}$$

$$P(X = 2 \mid Y = 1) = \frac{P(X = 2, Y = 1)}{P(Y = 1)} = \frac{1/36}{11/36} = \frac{1}{11}$$

$$P(X = 3 \mid Y = 1) = \frac{P(X = 3, Y = 1)}{P(Y = 1)} = \frac{5/36}{11/36} = \frac{5}{11}$$

$$P(X = 4 \mid Y = 1) = \frac{P(X = 4, Y = 1)}{P(Y = 1)} = \frac{1/36}{11/36} = \frac{1}{11}$$

Similarly

$$P(Y = 1 \mid X = 2) = \frac{P(X = 2, Y = 1)}{P(X = 2)} = \frac{1/36}{9/36} = \frac{1}{9}$$

$$P(Y = 2 \mid X = 2) = \frac{P(X = 2, Y = 2)}{P(X = 2)} = \frac{3/36}{9/36} = \frac{3}{9}$$

$$P(Y = 3 \mid X = 2) = \frac{P(X = 2, Y = 3)}{P(X = 2)} = \frac{3/36}{9/36} = \frac{3}{9}$$

$$P(Y = 4 \mid X = 2) = \frac{P(X = 2, Y = 4)}{P(X = 2)} = \frac{2/36}{9/36} = \frac{2}{9}$$

7. A two dimensional random variable (X, Y) have a joint probability mass function

 $p(x, y) = \frac{1}{27}(2x + y)$, where x and y can assume only integer values 0, 1 and 2. Find the conditional distribution of Y for X=x

Answer:

The joint probability function is given as,

$$p(x, y) = \frac{1}{27}(2x + y); x = 0,1,2; y = 0,1,2$$

From p(x,y) we can obtain the following table of joint probability distribution of X and Y

Y X	0	1	2	Total P(X=x)
0	0	¹ / ₂₇	² / ₂₇	³ / ₂₇
1	² / ₂₇	³ / ₂₇	⁴ / ₂₇	⁹ / ₂₇
2	⁴ / ₂₇	⁵ / ₂₇	⁶ / ₂₇	¹⁵ / ₂₇
Total P((Y=y)	⁶ / ₂₇	⁹ / ₂₇	¹² / ₂₇	1

The row totals give the marginal distribution of X and column totals give the marginal distribution of Y.

The conditional distribution of Υ Х given =X is given by, $P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$

Where the denominator P(X=x) is the marginal distribution of X. Here we need to obtain conditional distribution. i.e. for all possible values of x. Hence we calculate for the values of Y=0,1,2 for X=0,1,2 and write it in a tabular form as follows.

X Y	0	1	2
0	0	¹ / ₃	² / ₃
1	² /9	³ / ₉	⁴ / ₉
2	⁴ / ₁₅	⁵ / ₁₅	⁶ / ₁₅

8. Joint distribution of X and Y is given by, $f(x, y) = 4xye^{-(x^2+y^2)}$; $x \ge 0, y \ge 0$. Find marginal distribution of X.

Answer:

Marginal density of X is given by,

$$f(x) = \int_{y} f(x, y) dy = 4x \int_{0}^{\infty} y e^{-(x^{2} + y^{2})} dy$$
$$= 4x e^{-x^{2}} \int_{0}^{\infty} y e^{-y^{2}} dy = 4x e^{-x^{2}} \int_{0}^{\infty} e^{-t} \frac{dt}{2}$$
$$= 2x e^{-x^{2}} \left| -e^{-t} \right|_{0}^{\infty} = 2x e^{-x^{2}}, x \ge 0$$

9. Joint distribution of X and Y is given by, $f(x, y) = 4xye^{-(x^2+y^2)}$; $x \ge 0, y \ge 0$. Find conditional distribution of Y given X.

Answer:

We know that conditional distribution of Y given X is, $f(y \mid x) = \frac{f(x, y)}{f(x)}$

Where f(x) is marginal distribution of x. Marginal density of X is given by,

$$f(x) = \int_{y} f(x, y) dy = 4x \int_{0}^{\infty} y e^{-(x^{2} + y^{2})} dy$$

= $4x e^{-x^{2}} \int_{0}^{\infty} y e^{-y^{2}} dy = 4x e^{-x^{2}} \int_{0}^{\infty} e^{-t} \frac{dt}{2}$
= $2x e^{-x^{2}} \left| -e^{-t} \right|_{0}^{\infty} = 2x e^{-x^{2}}, x \ge 0$
 $f(y \mid x) = \frac{f(x, y)}{f(x)} = \frac{4x y e^{-(x^{2} + y^{2})}}{2x e^{-x^{2}}} = 2y e^{-y^{2}}$

10. Two discrete random variables X and Y have the joint probability mass function

$$p_{XY}(x, y) = \frac{\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y}}{y! (x-y)!} y = 0, 1, 2...x; x = 0, 1, 2...$$

y! (x - y)! where λ and p are constants with λ >0 and 0<p<1. Find the marginal probability mass functions of X and Y and identify them.

Answer:

The marginal pmf of X is given by,

$$p_{X}(x) = \sum_{y=0}^{x} p(x, y) = \sum_{y=0}^{x} \frac{\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y}}{y! (x-y)!}$$

= $\frac{\lambda^{x} e^{-\lambda}}{x!} \sum_{y=0}^{x} \frac{x! p^{y} (1-p)^{x-y}}{y! (x-y)!} = \frac{\lambda^{x} e^{-\lambda}}{x!} \sum_{y=0}^{x} {x \choose y} p^{y} (1-p)^{x-y}$
= $\frac{\lambda^{x} e^{-\lambda}}{x!} [p + (1-p)]^{x} = \frac{\lambda^{x} e^{-\lambda}}{x!}; x = 0, 1, 2, ...$

which is the probability function of a Poisson distribution with parameter λ . The marginal pmf of Y is given by,

$$p_{y}(y) = \sum_{x=y}^{\infty} p(x, y) = \sum_{x=y}^{\infty} \frac{\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y}}{y! (x-y)!}$$

= $\frac{(\lambda p)^{y} e^{-\lambda}}{y!} \sum_{x-y=0}^{\infty} \frac{[\lambda (1-p)]^{x-y}}{(x-y)!} = \frac{(\lambda p)^{y} e^{-\lambda}}{y!} \sum_{t=0}^{\infty} \frac{[\lambda (1-p)]^{t}}{(t)!}, (t = x - y)$
= $\frac{(\lambda p)^{y} e^{-\lambda}}{y!} e^{\lambda (1-p)} = \frac{(\lambda p)^{y} e^{-\lambda p}}{y!}; y = 0, 1, 2, ...$

This is the probability mass function of Poisson distribution with parameter λp

11. Two discrete random variables X and Y have the joint probability mass function $\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y}$

$$p_{XY}(x, y) = \frac{\lambda e^{-\beta (1-\beta)}}{y!(x-y)!} y = 0,1,2...x; x = 0,1,2...$$

where λ and β are

constants with λ >0 and 0<p<1. Find the The conditional distribution of Y for a given X **Answer:**

The marginal pmf of X is given by,

$$p_{X}(x) = \sum_{y=0}^{x} p(x, y) = \sum_{y=0}^{x} \frac{\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y}}{y! (x-y)!}$$

$$= \frac{\lambda^{x} e^{-\lambda}}{x!} \sum_{y=0}^{x} \frac{x! p^{y} (1-p)^{x-y}}{y! (x-y)!} = \frac{\lambda^{x} e^{-\lambda}}{x!} \sum_{y=0}^{x} {x \choose y} p^{y} (1-p)^{x-y}$$
$$= \frac{\lambda^{x} e^{-\lambda}}{x!} [p + (1-p)]^{x} = \frac{\lambda^{x} e^{-\lambda}}{x!}; x = 0, 1, 2, \dots$$
Conditional distribution of X given X is given by

Conditional distribution of Y given X is given by,

$$p(y \mid x) = \frac{p(x, y)}{p(x)} = \frac{\lambda^{x} e^{-\lambda} p^{y} (1-p)^{x-y} x!}{y! (x-y)! \lambda^{x} e^{-\lambda}}$$
$$= \frac{p^{y} (1-p)^{x-y} x!}{y! (x-y)!} = {\binom{x}{y}} p^{y} (1-p)^{x-y}, x \ge y, i.e.y = 0, 1, 2, \dots x$$

12. The joint probability density function of a two-dimensional random variable (X, Y) is given by, f(x,y)=2;0<x<1, 0<y<x,

Find marginal distribution of X and Y and conditional distribution of X given Y=y.

Answer:

The marginal distribution of X is given by,

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{x} 2 dy = 2x, 0 < x < 1$$

To find marginal distribution, range for Y is given as follows. We have 0 < x < 1, 0 < y < x. Combining both we get, 0 < y < x < 1

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{y}^{1} 2dx = 2(1 - y), 0 < y < 1$$

Conditional distribution of X given Y is equal to y is given by,

$$f(x \mid y) = \frac{f(x, y)}{f(y)} = \frac{2}{2(1-y)} = \frac{1}{(1-y)}, y < x < 1$$

13. The joint probability density function of a two-dimensional random variable (X, Y) is given by, f(x,y)=2;0<x<1, 0<y<x. Test whether X and Y are independent.

Answer:

X and Y are independent if f(x,y)=f(x).f(y)Hence first let us find the marginal distribution of X and Y. The marginal distribution of X is given by,

$$f(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{x} 2 dy = 2x_{0} < x < 1$$

To find marginal distribution, range for Y is given as follows. We have 0 < x < 1, 0 < y < x. Combining both we get, 0 < y < x < 1

$$f(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{y}^{1} 2 dx = 2(1 - y), 0 < y < 1$$

Consider $f(x).f(y)=2x.[1/(1-y)]\neq f(x, y)$ Therefore X and Y are not independent.

14. Joint distribution of X and Y is given by, $f(x, y) = 4xye^{-(x^2+y^2)}$; $x \ge 0$, $y \ge 0$. Verify whether X and Y are independent.

Answer:

If X and Y are independent, we can write f(x,y)=f(x).f(y). Hence first we find marginal distributions.

Marginal density of X is given by,

$$f(x) = \int_{y} f(x, y) dy = 4x \int_{0}^{\infty} y e^{-(x^{2}+y^{2})} dy$$

$$= 4xe^{-x^{2}}\int_{0}^{\infty} ye^{-y^{2}} dy = 4xe^{-x^{2}}\int_{0}^{\infty} e^{-t} \frac{dt}{2}$$

$$= 2xe^{-x^{2}} \left| -e^{-t} \right|_{0}^{\infty} = 2xe^{-x^{2}}, x \ge 0$$

Marginal density of Y is given by,

$$f(y) = \int_{x} f(x, y) dx = 4y \int_{0}^{\infty} xe^{-(x^{2}+y^{2})} dx$$

$$= 4ye^{-y^{2}} \int_{0}^{\infty} xe^{-x^{2}} dx = 4ye^{-y^{2}} \int_{0}^{\infty} e^{-t} \frac{dt}{2}$$

$$= 2ye^{-y^{2}} \left| -e^{-t} \right|_{0}^{\infty} = 2ye^{-y^{2}}, x \ge 0$$

$$f(x)f(y) = (2xe^{-x^{2}})2ye^{-y^{2}} = 4xye^{-(x^{2}+y^{2})} = f(x, y)$$

Hence X and Y are independent.

15. A two dimensional random variable (X,Y) have a bivariate distribution given by, P(X=x,Y=y)=(x2+y)/32 for x=0, 1, 2, 3 and y=0, 1. Find the marginal distributions of X and Y.

Answer:

We have

Х	0	1	2	3	Marginal distribution of
Υ					Y
0	0	1/32	4/32	9/32	14/32
1	1/32	2/32	5/32	10/32	18/32
Marginal	1/32	3/32	9/32	10/32	1
distribution of X					

The marginal probability distribution of X is given by,

 $P(X=x)=\Sigma_y P(X=x,Y=y)$ and is tabulated in last row of above table.

Marginal probability distribution of Y is given by,

 $P(Y=y)=\Sigma_xP(X=x,Y=y)$ and is tabulated in the last column of the table.