
1. Introduction
Welcome to  the  series  of  E-learning  modules  on  product  moment  correlation  coefficient, 
characteristics, assumptions, merits, demerits and its properties.

By the end of this session, you will be able to: 

• Explain about the product moment correlation coefficient

• Explain  the  characteristics  and  assumptions  of  product  moment  correlation 
coefficient

• Explain their merits and demerits

• Explain the properties

In the last  module, we have identified whether there is a relationship or not  between the 
variables using scatter diagram. These diagrams only give ideas about the relation, but do not 
measure the degree of correlation.  

As  a  measure  of  intensity  or  degree  of  linear  relationship  between  two  variables,  Karl 
Pearson, a British Biometrician, developed a formula called correlation coefficient, which is 
based  on  moments.  Hence,  it  is  called  product  moment  correlation  coefficient  or  Karl 
Pearson’s correlation coefficient.
Correlation coefficient between two random variables X and Y is usually denoted by r of X Y 
or r X Y. It is a numerical measure of linear relationship between them and is defined as r X Y 
is equal to covariance of X Y divided by sigma X into sigma Y.

If Xi Yi is the bivariate distribution, where i is equal to 1, 2 up to n then,
Covariance of X, Y is equal to expectation of X minus E of X into Y minus E of Y
Is equal to 1 by n into summation x i minus x bar into y i minus y bar
Sigma X square is equal to expectation of X minus E of X whole square 
Is equal to 1 by n into summation x i minus x bar whole square.
Sigma Y square is equal to expectation of Y minus E of Y whole square 
Is equal to 1 by n into summation y i minus y bar whole square.
And the summation ranges over i from 1 to n.

Another convenient form of the formula for correlation is as follows:         
r X Y is equal to summation x i minus x bar into y i minus y bar divided by square root of 
summation x i minus x bar whole square into summation y i minus y bar whole square.

On simplification we get,
r X Y is equal to n into summation x i into y i minus summation x i into summation y i divided 
by square root of  n into summation x i square minus summation x i the whole square into n 
into summation y i square minus summation y i the whole square. We use this formula for raw 
data.  Here n is number of observations.

Suppose if we have tabulated data, then r X Y is equal to n into summation f i into x i into y i 
minus summation fi into xi into summation fi into yi divided by square root of n into summation 
f i into x i square minus summation f i x i whole square into n into summation f i into y i square 
minus summation f i into y i whole square. Here n is equal to total frequency.



2.  Characteristics of Product 
Moment Correlation Coefficient
Following are the main characteristics of product moment correlation coefficient.

• Based  on  arithmetic  mean  and  standard  deviation  –  The  formula  is  based  upon 
arithmetic mean and standard deviation. The products of the corresponding values of 
the two series that is, co-variance is divided by the product of standard deviations of 
the two series to determine the formula

• Determines  the  direction  of  relationship  -  Karl  Pearson’s  method  establishes  the 
direction of relationship of variables, namely positive or negative

• Establishes the size of relationship – This method also shows the size of relationship 
between variables of the two series. It ranges between plus one and minus one.  Plus 
one  means  perfect  positive  correlation  and  minus  one  means  perfect  negative 
relationship.   In case the value is zero, then it  means no relationship between the 
variables

• Ideal measure – This method is considered to be an ideal method of calculation of 
correlation coefficient.   It  is  because of  the covariance which is most  reliable as a 
standard statistical tool

Coefficient of correlation of Product Moment is based on the following assumptions.

• The relationship is linear – We assume that there is a linear relationship between the 
two variables.  That means if the two variables are plotted, we get a straight line

• Normal distribution – A large number of independent causes are operating in both the 
variables correlated so as to produce a normal distribution.

• Related in a Casual Function – This means that the forces operating on each of the 
variable series are not independent of each other but are related in a causal fashion. 
In other words, cause and effect relationship exists between different forces operating 
on the items of the two variable series.  These forces must be common to both the 
series.  If the operating forces are entirely independent of each other and not related in 
any fashion, then there cannot be any correlation between the variables under study.  

For example, the correlation coefficient between:
a) The series of heights and incomes of individuals over a period of time
b) The series of marriage rate and the rate of agricultural production in a country over a 
     period of time.
c) The series relating to the size of the shoe and intelligence of a group of individuals.

Should be zero, since the forces affecting the two variable series in each of the above cases 
are entirely independent of each other.



3.  Merits & Limitations of Product 
Moment correlation coefficient
The Product Moment correlation coefficient has the following merits:

• Counts  all  values: It  takes  into  account  all  values  of  the  given  data  of  x  and  y. 
Therefore, it is based on all observations of the series

• More Practical and Popular: Product moment correlation coefficient ‘r’ is considered to 
be more practical method as compared to other mathematical methods us

• ed for ‘r’.  It is also very popular and commonly used method.

• Numerical  Measurement  of  ‘r’: It  provides numerical  measurement  of  coefficient  of 
correlation

• Measures Degree and Direction: This method measures both degree and direction of 
the correlation between the variables at a time

• Facilitates Comparison: Product Moment coefficient of correlation is a pure number 
independent  of  units.  Therefore,  the  comparison  between  the  series  can  be  done 
easily

• Algebraic  Treatment Possible: Product  Moment coefficient  of  correlation techniques 
can easily be applied for higher algebraic treatment

The use of coefficient of correlation has certain limitations which are as under:

• Linear relationship: Coefficient of correlation assumes linear relationship between the 
variables regardless of the fact whether that assumption is correct or not

• More  time  consuming: Compared  with  some  other  methods,  this  method  is  time 
consuming

• Affected by extreme items:  Another drawback of coefficient of correlation is that it is 
affected by the extreme items

• Difficult to interpret: It is not easy to interpret the significance of correlation coefficient. 
It is generally misinterpreted

Two independent variables are uncorrelated but the converse of the above statement is not 
true. 
We prove using the expression of r X Y and the converse is proved by using an example.
If X and Y are independent variables,  then Covariance of X Y is equal to zero
Implies, r X Y is equal to covariance of X Y divided by sigma X into sigma Y is equal to zero.
Hence, two independent variables are uncorrelated.

To prove that the converse is not true, that is uncorrelated variables may not be independent 
as the following example illustrates.



Figure 1

Consider the following table, where X takes values minus 3, minus 2 and so on. Y takes 
values 9, 4 and so on. If we find product of these two variables, we get minus 27, minus 8 and 
so on. Totals of all the columns are denoted by the bold numbers.
Let us find mean X bar is equal to 1 divided by n into summation X is equal to zero.

Covariance of X, Y is equal to 1 divided by n into summation X into Y minus X bar into Y bar is 
equal to zero.

That is r X Y is equal to covariance of X Y divided by sigma X into sigma Y is equal to zero.

Thus,  in  the  above  example,  the  variables  X  and  Y  are  uncorrelated.   But  on  careful 
examination we find that X and Y are not independent but they are connected by the relation 
Y=X2.  Hence two uncorrelated variables need not necessarily be independent.  

A simple reasoning for this strange conclusion is that r X Y is equal to zero, merely implies the 
absence of any linear relationship between the variables X and y.  There may however, exist 
some other form of relationship between them. For example, quadratic, cubic or trigonometric.

Even though, in general the converse statement may not hold. But in the following cases, the 
converse  statement  that  is  two  uncorrelated  variables  may be  independent  holds  in  the 
following cases. 
  
If X and Y are jointly normally distributed with row is equal to zero, then they are independent. 
If row is equal to zero then f of x y is equal to 1 by sigma x into square root of 2 into pi into 
exponential of minus half  into x minus mew x divided by sigma x whole square into 1 by 
sigma y into square root of 2 into pi into exponential of minus half into y minus mew y divided 
by sigma y whole square is equal to f 1 of x into f 2 of y. 
Hence, X and Y are independent. 

1. If each of the two variables X and Y takes two values, 0, 1 with positive probabilities, 
then r of X Y is equal to zero implies X and Y are independent.

We prove the above statement as follows:
Let X take values 1 and zero with positive probabilities p 1 and q 1 respectively and let Y take 
the values 1 and zero with positive probabilities p 2 and q 2 respectively.  Then,
r of X, Y is equal to zero implies, covariance of X Y is equal to zero.



Implies zero is equal to expectation of  X into Y minus expectation of X into expectation of Y 
Is equal to 1 into probability  of  X is  equal to 1 intersection Y is equal to 1 minus 1 into 
probability of X is equal to 1 into 1 into probability of Y is equal to 1
Is equal to p of x is equal to 1 intersection Y is equal to 1 minus p 1 into p 2

Implies, probability of X is equal to 1 intersection Y is equal to 1 is equal to p 1 into p 2 is 
equal to probability of X is equal to 1 into Probability of Y is equal to 1.
Hence, X and Y are independent.



4.  Properties of Product Moment 
Correlation  Coefficient-  Property 
1&2
Now let us state and prove the properties of product moment correlation coefficient.

The first property says that,
If correlation is present, then coefficient of correlation would lie between plus or minus 1. If 
correlation is absent, then it is denoted by zero. That is minus 1 less than or equal to r less 
than or equal to plus 1.

To prove this property, we consider the expression of correlation coefficient 
r X Y is equal to 1 by n into summation x i minus x bar into y i minus y bar divided by square 
root of 1 by n into summation x i minus x bar whole square into 1 by n into summation y i 
minus y bar whole square.

That is r X Y square is equal to summation a i into b i whole square divided by summation a i 
square into summation b i square.
Where a i is equal to x i minus x bar and b i is equal to y i minus y bar.

From Schwartz  inequality,  which states that  if  a  i  b  i  is  equal  to 1,  2,  up to  n are  real 
quantities, then summation a i into b i whole square is less than or equal to summation a i 
square into summation b i square.
The sign of equality holding if a 1 by b 1 is equal to a 2 by b 2 is equal to .... is equal to a n by 
b n.
Using Schwartz inequality, we get, r X Y is less than or equal to 1.  That is, modulus of r X Y is 
less than or equal to minus 1, implies, minus 1 less than or equal to r is less than or equal to 
plus 1. 
Hence the proof.

Second property says that, 
Correlation coefficient is independent of change of origin and scale.

To prove this property, consider the transformation, U is equal to X minus a divided by h and 
V is equal to y minus b divided by k, so that X is equal to a plus h into U and Y is equal to b 
plus k into V, where a, b, h and k are constants and h and k are positive.

We shall prove that r X Y is equal to r U V.
Since x is equal to a plus h into U and Y is equal to b plus k into V.  

On taking expectations, we get,
Expectation of X is equal to a plus h into expectation of U and expectation of Y is equal to b 
plus k into expectation of V.

Therefore, X minus E of X is equal to h into U minus Expectation of U and



Y minus Expectation of Y is equal to k into V minus Expectation of V.

Implies covariance of X Y is equal to Expectation of X minus E of X into Y minus E of Y is 
equal to h into U minus E of U into k into V minus E of V
Is equal to h into K into Expectation of U minus E of U into V minus E of V is equal to h into k 
into covariance of U V.

Sigma X square is equal to Expectation of X minus E of X the whole square is equal to 
Expectation of h square into U minus E of U whole square is equal to h square into sigma U 
square
Implies sigma X is equal to h into sigma U, where h is positive.
Sigma Y square is equal to expectation of Y minus E of Y whole square is equal to k square 
into V minus E of V whole square is equal to k square into sigma V square.
Implies sigma Y is equal to k into sigma V where k is positive.

Substituting in r of X Y is equal to covariance of X Y divided by sigma X into sigma Y is equal 
to h into k into covariance of U, V divided by h into k into sigma U into sigma V is equal to 
covariance of U, V divided by sigma U into sigma V is equal to r of U, V.



5.  Properties of Product Moment 
Correlation Coefficient- Property 3 
& Others
The third property says that, If X and Y are random variables and a, b, c, d are any numbers 
provided, that a is not equal to zero and c is not equal to zero then r of a X plus b c Y plus d is 
equal to a into c divided by modulus of a into c into r of X, Y.

We prove this property as follows:
Variance of a into X plus b is equal to a square into sigma X square and variance of c into Y 
plus d is equal to c square into sigma Y square.

Covariance of a X plus b and c into Y plus d is equal to a into c into sigma X Y.

Therefore, 
r of a into X plus b c into Y plus d is equal to covariance of a into X plus b c into Y plus d 
divided by square root of variance of a into x plus b into variance of c into Y pus d

is equal to a into c sigma X Y divided by modulus of a into modulus of c into sigma X into 
sigma Y is equal to a into c divided by modulus of a into c into r of X, Y
If ac is greater than zero, that is if a and c are of same signs, then a into c divided by modulus 
of a into c is equal to plus 1.

If ac is less than zero, that is if a and c are of opposite signs, then a into c divided by modulus 
of a into c is equal to minus 1.

Some of the other properties of product moment correlation coefficient are:

• Coefficient of correlation is based on a suitable measure of variation as it takes 
into account all items of the variable

• If there is an accidental correlation, in that case the coefficient of correlation 
might lead to fallacious conclusions. It is known as non-sense or spurious 
correlation

• Coefficient of correlation works both ways
i.e.,  rXY = rYX 

The coefficient of correlation does not prove causation but it is simply a measure of co-
variation.  It is  because variations in X and Y series may be due to,

1. Some common cause
2. Some mutual dependence
3. Some change and
4. Some causation of the subject to be relative.

Coefficient of correlation is independent of the unit of measurement.

Here’s a summary of our learning in this session, where we have understood:



• About the product moment correlation coefficient

• The characteristics and assumptions of product moment correlation coefficient

• Merits and demerits of product moment correlation coefficient

• Properties of product moment correlation coefficient


