
Frequently Asked Questions 
 
 

1. Define exponential distribution. 
Answer:  
A continuous random variable X is said to have an exponential distribution 

with parameter θ if its pdf is given by, f(x)=θe-xθ, x>0.  
And we write X~exp(θ) 

 
2. Define exponential distribution with mean θ 

Answer: 

A continuous random variable X is said to have an exponential distribution 

with mean θ if its pdf is given by, 0
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3. Obtain mgf of exponential distribution. 
Answer: 
If X~exp (θ), then mgf is given by, 
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provided |t/θ|<1  

 

4. Derive mean of the distribution from mgf using differentiation. 
Answer:  

We know that MX(t)=[1-(t/θ)]-1  
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5. Obtain variance of the exponential distribution from mgf using the method of 
differentiation. 

Answer: 
Variance of the distribution is given by, V(X) =E(X2)-[E(X)]2  
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6. Write the relationship between mean and variance of exponential distribution. 

    Answer: 
If X~exp (θ), then mean=1/θ and variance = 1/θ2  

I.e. Variance= (1/θ) (1/θ) =mean/θ  

Therefore Variance>Mean, if 0<θ<1 

Variance=Mean if θ=1 and 

Variance<Mean if θ>1 

Hence for the exponential distribution,  

Variance>,= or < Mean for different values of the parameter.  

 

7. Obtain the expression for mean and variance by equating the coefficient of 

tr/r! in mgf. 

Answer:  
Let us find mean and variance by equating the coefficient of tr/r!.  Consider 

the mgf, 
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Now E (Xr) =coefficient of tr/r!.  

Therefore E(X)=coefficient of t/1!=1/θ  
E(X2)=Coefficient of t2/2!=2/θ2 
Hence V(X)= E(X2)-[E(X)]2 

                = 2/θ2-(1/θ)2 
                = 1/θ2  

 

8. Find Cumulant generating function. 
Answer:  

We know that Cumulant generating function is given by  

KX(t)=log(MX(t))=log[1-(t/θ)]-1  

  =-1log[1-(t/θ)]  
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9. Obtain the first four Cumulants from cgf. 
Answer:   

K1=coefficient of t/1!=1/θ 
K2=coefficient of t2/2!=1/θ2 

K3=coefficient of t3/3!=2/θ3=µ3  

K4=coefficient of t4/4!=6/θ4  
 

10.Comment on the nature of an exponential distribution. 

Answer: 
Let us find coefficient of skewness  
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Coefficient of kurtosis is given by, 
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Hence exponential distribution is positively skewedand has leptokurtic curve. 

 

11.Find median of an exponential distribution.   

Answer:  

Median divided the distribution into two equal parts.  Hence if M is the median 

of the distribution then 
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We can consider any one of the integral.  Let us consider the first.  
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12.What is the mode of an exponential distribution? 
Answer: 

Observe that exponential distribution is strictly a decreasing function, f(x) is 
maximum at x=0.  Hence mode of the distribution is zero.  
 

13. State and prove memoryless property of an exponential distribution. 

Answer: 

Exponential distribution ‘lacks memory’, i.e. if X has an exponential     
distribution, then for every constant a≥0, one has 

P (Y≤x/X≥a) =P (X≤x) for all x, where Y=X-a 

Proof: 
We have P (Y≤x ∩ X≥a) =P(X-a≤x ∩ X≥a) 

                                  =P (X≤x+a ∩ X≥a)  

                                  =P (a≤X ≤a+x) 
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Hence,   
P (Y≤x/X≥a) =P (X≤x) 

i.e. exponential distribution lacks memory.  
 



14.Show that If Xi, i = 1, 2, n, are independent exponential r.v.s with parameter 

θi. Let Z = min(X1... Xn), then Z~exp(Σθi). 

Answer: 
Since Xi’s are independent exponential r.v.s with parameter θi, pdf is given by 

f (xi) =θie
-xθi, xi>0 

To prove above result first we consider  

P (Z>x) =P [min(X1... Xn)>x] 

          =P[X1>x,X2>x…Xn>x] 

Since the random variables are independent, 

 P(Z>x)=P[X1>x]P[X2>x]…P[Xn>x] 
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distribution with parameter Σθi. Hence by uniqueness theorem of mgf,  Z ~ 

exp(Σθi)  

 

15.Suppose that the amount of time one spends in a bank is exponentially 

distributed with mean 10 minutes, what is the probability that a customer will 
spend more than 15 minutes in the bank? What is the probability that a 

customer will spend more than 15 minutes in the bank given that he is still in 
the bank after 10 minutes? 
Answer: 

Let X denote amount of time one spends in a bank.  Hence X~exp(θ) 

Mean is 10 minutes.  Hence θ=1/10=0.1 

Therefore pdf is given by, f(x)=θe-xθ, x>0. 

By substituting θ, we get f(x) = (0.1)e-0.1x, x>0 

Consider  

P(Customer will spend more than 15 minutes) 

=P(X > 15) 22010
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Now we need to find the probability that customer will spend more than 15 

minutes in the bank given he is still in the bank after 10 minutes 

i.e., P(X > 15|X > 10)  

Using memory less property we can write, 

P(X > 15|X > 10) = P(X > 5) = e-0.1x5= 0.604 

 

 


