
1. Introduction
Welcome to the series of e-learning modules on Multiple Correlation and Regression in 
Three Variables.  Here we shall discuss about the multiple correlation, its coefficient & 
properties, and expression for multiple regression in terms of total and partial correlation 
coefficient. 

By the end of this session, you will be able to explain:
• Multiple correlation 

• Multiple regression 

• Properties of multiple regression 

• Expression for multiple regression in terms of total and partial correlation 
coefficients 

When the values of one variable are associated with or influenced by other variable Karl 
Pearson’s coefficient of correlation can be used as a measure of linear relationship 
between them.
Say, for example: 
The age of husband and wife, 
the height of father and son, 
the supply and demand  of a commodity and so on, 

But sometimes there is interrelation between many variables, and the value of one 
variable may be influenced by many others.
An Example would be:
The yield of crop per acre, say ‘X1’ depends upon quality of seed say ‘X2’, fertility of 
soil, say ‘X3’ , fertilizer used say ‘X4’, irrigation facilities say X5, weather conditions say 
‘X6’ and so on.  
Whenever we are interested in studying the joint effect of a group of variables upon a 
variable not included in that group, our study is that of multiple correlations and multiple 
regressions.



2. Coefficient of Multiple 
Correlation
Now let us discuss about the coefficient of multiple correlation.
In a tri-variate distribution in which each of the variables ‘X1’, ‘X2’, and ‘X3’ has ‘N’ 
observations, the multiple correlation coefficient between ‘X1’ on ‘X2’ and ‘X3’ is, usually 
denoted by (R ‘1 point 2-3’), which is the simple correlation coefficient between ‘X1’ and 
the joint effect of X2 and ‘X3’ on ‘X1’. 

In other words (R ‘1 point 2-3’) is the correlation coefficient between ‘X1’ and its 
estimated value as given by the plane of regression of ‘X1’ on ‘X2’ and ‘X3’ namely, 
(e ‘1 point 2-3’) is equal to [(b ‘1-2 point 3’) into ‘X2’] plus [(b ‘1-3 point 2’) into ‘X3’]. 
We have (X ‘1 point 2-3’) is equal to ‘X1’ minus (b ‘1-2 point 3’) into ‘X2’ minus (b ‘1-3 
point 2’) into ‘X3’ is equal to ‘X1’ minus (e ‘1 point 2-3’) 
Implies, (e ‘1 point 2-3’) is equal to ‘X1’ minus (X ‘1 point 2-3’). 

Since X-i’s are measured from their respective means, we have: 
[Expectation of (X ‘1 point 2-3’)] is equal to ‘zero’ and [expectation of (e ‘1 point 2-3’)] is 
equal to zero. 
Since Expectation of ‘X-I’ is equal to ‘zero’ for ‘i’ is equal to 1, 2 and 3. 
By definition,
(R ‘1 point 2-3’) is equal to covariance of ‘X1’, (e ‘1 point 2-3’) divided by (square root of 
variance of ‘X1’) into (variance of (e ‘1 point 2-3’)). 
Covariance of ‘X1’, (e ‘1 point 2-3’) is equal to (expectation of ‘X1’) minus (E of ‘X1’) into 
(e ‘1 point 2-3’) minus [E of (e ‘1 point 2-3’]. 
Is equal to (expectation of ‘X1’) into (e ‘1 point 2-3’) 
Is equal to ‘1 by N’ into (summation ‘X1’) into (e ‘1 point 2-3’). 
Is equal to ‘1 by N’ into (summation ‘X1’) into [X1 minus (X ‘1 point 2-3’)]. 

Is equal to ‘1 by N’ into (summation ‘X1’ square) minus [‘1 by N’ into ‘summation X1’ into 
(X ‘1 point 2-3’)]. 
Is equal to ‘1 by N’ into (summation ‘X1’ square) minus ‘1 by N’ into [summation (X ‘1 
point 2-3’) square]. 
Is equal to ‘sigma 1 square’ minus (sigma ‘1 point 2-3’ square). 
Also [variance of (e ‘1 point 2-3’)] is equal to [expectation of (e ‘1 point 2-3’) square]. 
Is equal to ‘I by N’ into summation [(e ‘1 point 2-3’) square]
Is equal to ‘1 by N’ into summation ‘X1’ minus (X ‘1 point 2-3’) square. 
Is equal to ‘1 by N’ into (summation ‘X1’ square) plus [(X ‘1 point 2-3’) square] minus [2 
into ‘X1’ into (X ‘1 point 2-3’)]. 

Is equal to ‘1 by N’ into (summation ‘X1’ square) plus ‘1 by N’ into [summation (X ‘1 point 
2-3’) square minus [‘2 by N’ into ‘summation X1’ into (X ‘1 point 2-3’)] 



Is equal to ‘1 by N’ into (summation ‘X1’ square) plus [‘1 by N’ into summation (X ‘1 point 
2-3’) square] minus [‘2 by N’ into summation (X ‘1 point 2-3’ square)]. 
Is equal to (sigma 1 square) minus (sigma ‘1 point 2-3’ square). 
  
Substituting in (R ‘1 point 2-3’), we get, 
(R ‘1 point 2-3’) is equal to (sigma 1 square) minus (sigma ‘1 point 2-3’ square) divided 
by [square root of (sigma 1 square)] into [(sigma 1 square) minus (sigma ‘1 point 2-3’ 
square)]. 
Implies, (R ‘1 point 2-3’ square) is equal to (sigma 1 square) minus (sigma ‘1 point 2-3’ 
square) divided by (sigma 1 square) is equal to [‘1’ minus (sigma ‘1 point 2-3’ square) 
divided by (sigma 1 square) 
Implies [‘1’ minus (R ‘1 point 2-3’ square) is equal to (sigma ‘1 point 2-3’ square) divided 
by (sigma 1 square). 

The above expression we can write in terms of omega, 
(‘1’ minus (R ‘1 point 2-3’) square) is equal to (‘omega’ divided by ‘omega 1-1’) 
Where omega is equal to (determinant of ‘1’, ‘r 1-2’, ‘r 1-3’, ‘r 2-1’, ‘1’, ‘r 2-3’, ‘r 3-1’, ‘r-3-
2’, ‘1’) is equal to ['1’ minus (‘r 1-2’ square) minus (‘r 1-3’ square) minus (r ‘2-3 square’)] 
plus (‘2’ into ‘r 1-2’ into ‘r 1-3’ into ‘r 2-3’) 
And (omega 1-1) is equal to (determinant of ‘1’, ‘r 2-3’, ‘r 3-2’, ‘1’ 
is equal to (‘1’ minus ‘r 2-3’ square). 

Hence we get, (R ‘1 point 2-3’ square) is equal to (‘1’ minus ‘omega’) divided by (omega 
1-1) is equal to (‘r 1-2’ square) plus (‘r 1-3’ square) minus (‘2’ into ‘r 1-2’ into ‘r 1-3’ into ‘r 
2-3’) divided by (‘1’ minus ‘r 2-3’ square). 
This formula expresses the multiple correlation coefficient in terms of the total 
correlation coefficient between the pairs of variables. 



3. Remarks of  Multiple 
Correlation
Now consider the following remarks. 
(R ‘1 point 2-3’ square) is ‘less than or equal’ to ‘1’ 
implies, ‘1’ minus (R ‘1 point 2-3’ square) is equal to (‘omega’ by ‘omega 1-1’) is ‘greater 
than or equal to’ ‘zero’. 
But, ‘omega 1-1’ is equal to (‘1’ minus ‘r 2-3’ square) greater than ‘zero’, 
Since, (modulus of ‘r 2-3’) is ‘less than or equal to’ ‘1’. 
Therefore, ‘omega’ is ‘greater than or equal to’ ‘zero’. 
Also ‘omega 2-2’ is equal to (‘minus 1’ power ‘2 plus 2’) into (‘1’ minus ‘r 1-3’ square) is 
‘greater than or equal to’ ‘zero’, and 
‘omega 3-3’ is equal to (‘minus 1’ power ‘3 plus 3’) into (‘1’ minus ‘r 1-2’ square) is 
‘greater than or equal to’ ‘zero’. 
In general, ‘omega-i’ is ‘greater than or equal to’ ‘zero’ for (‘i’ is equal to 1, 2 and 3). 

The multiple correlation coefficients (R ‘2 point 1-3’ square) and (R ‘3 point 1-2’ square) 
are given by: 
(R ‘2 point 1-3’ square) is equal to (‘r 2-1’ square) plus (‘r 2-3’ square) minus (‘2’ into ‘r 2-
1’ into ‘r 2-3’ into ‘r 1-3’) divided by (‘1’ minus ‘r 1-3’ square) and 

(R ‘3 point 1-2’ square) is equal to (‘r 1-3’ square) plus (‘r 1-2’ square) minus (‘2’ into ‘r 1-
2’ into ‘r 1-3’ into ‘r 2-3’) divided by (1 minus ‘r 1-2’ square).

In the case of ‘n’ variables ‘X1’, ‘X2’, etc ‘X-n’, the multiple correlation coefficients of ‘X1’ 
on ‘X2’, ‘X3’ etc ‘X-n’ is usually denoted by (R ‘1 point 2-3’ etc n), is the correlation 
coefficient between ‘X1’ and (e ‘1 point 2-3’ etc n) is equal to ‘X1’ minus (X ‘1 point 2-3’ 
etc. n) 
Therefore (R ‘1 point 2-3’ etc n) is equal to covariance of ‘X1’, (e ‘1 point 2-3’ etc n) 
divided by [square root of ‘variance of X1’ into ‘Variance of (e ‘1 point 2-3’ etc n)]. 
Covariance of ‘X1’, (e ‘1 point 2-3’ etc n) is equal to ‘1 by N’ summation ‘X1’ into (e ‘1 
point 2-3’ etc n) 
Is equal to ‘1 by N’ into summation ‘X1’ into (‘X1’ minus (X ‘1 point 2-3’ etc n) 

Is equal to ‘1 by N’ into (summation ‘X1’ square) minus ‘1 by N’ into summation ‘X1’ into 
(X ‘1 point 2-3’ etc n) 
Is equal to ‘1 by N’ into (summation ‘X1’ square) minus ‘1 by N’ summation (X ‘1 point 2-
3’ etc n square) 
is equal to (sigma 1 square) minus (sigma ‘1 point 2-3’ etc n square). 
Also, Variance of (e ‘1 point 2-3’ etc n) is equal to ‘1 by N’ summation (e ‘1 point 2-3’ etc 
n square) 
Is equal to ‘1 by N’ [summation ‘X1’ minus (X ‘1 point 2-3’ etc n whole square)]. 
Is equal to ‘1 by N’ into (summation ‘X1’ square) plus (X ‘1 point 2-3’ etc n square) 
minus [‘2’ into ‘X1’ into (X ‘1 point 2-3’ etc n)]. 



Is equal to ‘1 by N’ into (summation ‘X1’ square) plus ‘1 by N’ summation (X ‘1 point 2-3’ 
etc n square) minus [‘2’ into ‘1 by N’ summation ‘X1’ into (X ‘1 point 2-3’ etc n)]. 
Is equal to ‘1 by N’ into (summation ‘X1’ square) plus ‘1 by N’ summation (X ‘1 point 2-3’ 
etc n square) minus [‘2 by N’ summation (X ‘1 point 2-3’ etc n) square]. 
Is equal to (sigma 1 square) minus (sigma ‘1 point 2-3’ etc., n square). 
Therefore, (R ‘1 point 2-3’ etc., n) is equal to (sigma 1 square) minus (sigma ‘1 point 2-3’ 
etc n square) divided by square-root of (sigma 1 square) into (sigma 1 square) minus 
(sigma ‘1 point 2-3’ etc n square). 
Is equal to (sigma 1 square) minus (sigma ‘1 point 2-3’ etc n) divided by (sigma 1 
square) whole power ‘half’. 
Implies (R ‘1 point 2-3’ etc., n square) is equal to [‘1’ minus (sigma ‘1 point 2-3’ etc n 
square) divided by (sigma 1 square) 
Is equal to ‘1’ minus ‘omega’ divided by ‘omega 1-1’. 



4. Multiple Correlation in terms 
of Total and Partial Correlation 
Coefficients 
Now let us obtain the expression for multiple correlation in terms of total and partial 
correlation coefficients. 
Show that 1 minus (R ‘1 point 2-3’ square) is equal to (‘1’ minus ‘r 1-2’ square) into (‘1’ 
minus ‘r 1-3 point 2’ square). 
Deduce that, 
(R ‘1 point 2-3’) is greater than or equal to ‘r 1-2’ 
(R ‘1 point 2-3’ square) is equal to (‘r 1-2’ square) plus (‘r 1-3’ square) if ‘r 2-3’ is equal to 
‘zero’. 
1 minus (R ‘1 point 2-3’ square) is equal to (‘1’ minus ‘row’) into (‘1’ plus ‘2 into row’) 
divided by (‘1’ plus ‘row’), provided all coefficients of zero order are equal to ‘row’. 
If (R ‘1 point 2-3’) is equal to ‘zero’, ‘X1’ is uncorrelated with any other variables, that is 
‘r 1-2’ is equal to ‘r 1-3’ is equal to ‘zero’. 

We know that [‘1’ minus (R ‘1 point 2-3’) square] is equal to (‘1’ minus ‘r 1-2’ square) 
plus (‘r 1-3’ square) minus (‘2’ into ‘r 1-2’ into ‘r 1-3’ into ‘r 2-3’) divided by (‘1’ minus ‘r 2-
3’ square). 
Is equal to ‘1’ minus (‘r 2-3’ square) minus (‘r 1-2’ square) minus (‘r 1-3’ square) plus (‘2’ 
into ‘r 1-2’ into ‘r 1-3’ into ‘r 2-3’) divided by (‘1’ minus ‘r 2-3’ square). 

Also, (‘1’ minus ‘r 1-3 point 2’ square) 
is equal to ‘1’ minus (‘r 1-3 square’) minus (‘r 1-2’ into ‘r 2-3’ whole square) divided by 
(‘1’ minus ‘r 1-2’ square) into (‘1’ minus ‘r 2-3’ square) 
Is equal to ‘1’ minus (‘r 1-2’ square) minus (r ‘2-3’ square) minus (r ‘1-3’ square) plus (‘2’ 
into ‘r 1-2’ into ‘r 1-3’ into ‘r 2-3’) divided by [‘1’ minus (‘r 1-2’ square) into ‘1’ minus (‘r 2-
3’ square)]. 
Implies, [‘1’ minus (R ‘1 point 2-3’) square] is equal to [‘1’ minus (‘r 1-2’ square) into ‘1’ 
minus (‘r 1-3 point 2’ square). 

After showing the above expression let us deduce the different results as follows.  
To prove the first one, let us start as follows. 
Since (modulus of ‘r 1-3 point 2’ is ‘less than or equal to’ ‘1’), we have, 
‘1’ minus (R ‘1 point 2-3’ square) is ‘less than or equal to’ (‘1 minus ‘r 1-2’ square) 
implies, (R ‘1 point 2-3’) is ‘greater than or equal to’ ‘r 1-2’. 
To prove the second one, consider: 
(‘r 1-3 point 2’ square) is equal to (‘r 1-3’ square) plus (‘r 1-2’ into ‘r 2-3’ whole square) 
divided by [square root of ‘1’ minus (‘r 1-2’ square) into ‘1’ minus (‘r 2-3’ square)] 



Is equal to (‘r 1-3’ square) divided by (square root of ‘1’ minus ‘r 1-2’ square), if ‘r 2-3’ is 
equal to ‘zero’. 
Therefore [‘1’ minus (R ‘1 point 2-3’ square)] is equal to (‘1’ minus ‘r 1-2’ square) into (‘1’ 
minus ‘r 1-3’ square) by (‘1’ minus ‘r 1-2’ square) 
is equal to ‘1’ minus (‘r 1-2’ square) minus (‘r 1-3’ square) 
Hence (R ‘1 point 2-3’ square) is equal to (‘r 1-2’ square) plus (‘r 1-3’ square) if ‘r 2-3’ is 
equal to ‘zero’. 

To prove the third one, let us consider that the all coefficients of zero order are equal to 
row. 
That is ‘r 1-2’ is equal to ‘r 1-3’ is equal to ‘r 2-3’ is equal to ‘row’. 
Therefore (r ‘1-3 point 2’) is equal to (‘row’ minus ‘row-square’) divided by (square root 
of ‘1’ minus ‘row square’ into ‘1’ minus ‘row square’) 
Is equal to (‘row’ into ‘1 minus row’) divided by (‘1’ minus ‘row square’) 
is equal to ‘row’ divided by ‘1 plus row’. 
Hence, by substituting in [1 minus (R ‘1 point 2-3’) square], which is given in terms of 
partial and total correlation coefficient, we get, 
[1 minus (R ‘1 point 2-3’) square] is equal to [‘1’ minus ‘row square’ into (‘1’ minus ‘row 
square’ by ‘1 plus row’ the whole square] 
is equal to ‘1 minus row’ into (‘1’ plus ‘2 into row’) divided by (‘1’ plus ‘row’). 

To prove the last one, we again consider [1 minus (R ‘1 point 2-3’) square], 
which is given in terms of partial and total correlation coefficient. 
In this expression, if (R ‘1 point 2-3’) is equal to ‘zero’, we get, 
‘1’ is equal to (‘1’ minus ‘r 1-2’ square) into (‘1’ minus ‘r 1-3 point 2’ square) 
Since ‘zero’ ‘less than or equal’ to (‘r 1-2’ square) ‘less than or equal to’ ‘1’, and ‘zero’ 
‘less than or equal to’ (‘r 1-3 point 2’ square) less than or equal to ‘1’, will hold if and only 
if (‘r 1-2’ is equal to ‘zero’) and (r ‘1-3 point 2’ is equal to ‘zero’). 
Now, (r ‘1-3 point 2’) is equal to ‘zero’ 
implies, [(r ‘1-3’) minus (r ‘1-2’) into (r ‘3-2’)] divided by [(square root of ‘1’ minus ‘r 1-2’ 
square) into (‘1’ minus ‘r 3-2’ square)] is equal to ‘zero’ 
Implies, ‘r 1-3’ is equal to ‘zero’. 
Thus if (R ‘1 point 2-3’) is equal to ‘zero’ then ‘r 1-3’ is equal to ‘r 1-2’ is equal to ‘zero’.  
That is ‘X1’ is uncorrelated with ‘X2’ and ‘X3’. 



5. Properties of Multiple 
Correlation Coefficient
1. Multiple correlation coefficient measures the closeness of the association 
between the observed values and the expected values of a variable obtained from the 
multiple linear regression of that variable on other variables. 
2. Multiple correlation coefficient between observed values and expected values 
when the expected values are calculated form a linear relation of the variables 
determined by the method of least square, is always greater than that where expected 
values are calculated from any other linear combination of the variables.
3. Since (R ‘1 point 2-3’) is the simple correlation between ‘X1’ and (e ‘1 point 2-3’), 
it must lie between ‘minus 1’ and ‘plus 1’.  But (R ‘1 point 2-3’) is a non-negative 
quantity, ‘zero’ less than or equal to (R ‘1 point 2-3’) less than or equal to ‘1’.
4. If (R ‘1 point 2-3’) is equal to ‘1’, then association is perfect and all the regression 
residuals are zero, and as such (Sigma ‘1 point 2-3’ square) is equal to ‘zero’.  In this 
case, since ‘X1’ is equal to (e ‘1 point 2-3’), the predicted value of ‘X1’, the multiple 
linear regression equation of ‘X1’ on ‘X2’ and ‘X3’ may be said to be a perfect prediction 
formula. 
5. If (R ‘1 point 2-3’) is equal to ‘zero’, then all total and partial correlations involving 
‘X1’ are ‘zero’.  So ‘X1’ is completely uncorrelated with all the other variables in this 
case and the multiple regression equation fails to throw any light on the value of ‘X1’ 
when ‘X2’ and ‘X3’ are known. 
6. (R ‘1 point 2-3’) is not less than any total correlation coefficient.  ie., (R ‘ 1 point 
2-3’) greater than ‘r 1-2’ or ‘r 1-2’ or ‘r 2-3’. 

From the data relating to the yield of dry bark (X1), height (X2) and girth (X3) for 18 
cinchona plants, the following correlation coefficients were obtained. 
‘r 1-2’ is equal to ‘0.72’;  ‘r 1-3’ is equal to ‘0.72’ and ‘r 2-3’ is equal to ‘0.52’. 
Find the multiple correlation coefficient., 
(R ‘1 point 2-3’) square is equal to [(‘r 1-2’ square) plus (‘r 1-3’ square) minus (‘2’ into ‘r 
1-2’ into ‘r 1-3’ into ‘r 2-3’)] divided by (‘1’ minus ‘r 2-3’ square) 
Is equal to [(‘0.77’ square) plus (‘0.72’ square) minus (‘2’ into ‘0.77’ into ‘0.72’ into 
‘0.52’)] divided by (‘1’ minus ‘0.52’ square) is equal to ‘0.7334’. 
Therefore (R ‘1 point 2-3’) is equal to (square root of ‘0.7334’)
is equal to (‘0.8564’), since multiple correlation coefficient is non-negative. 

Here’s a summary of our learning in this session:

• Multiple correlation

• Multiple regression

• Properties of multiple regression

• Expression for multiple regressions in terms of total and partial correlation 
coefficients.


