Frequently Asked Questions

1. When do we use Partial or Multiple correlations? **Answer:**

Partial correlation and multiple correlations are used when we have more than two variables.

2. What do you mean by partial correlation coefficient?

Answer:

Sometimes the correlation between two variables X_1 and X_2 may be partly due to the correlation of a third variable, X_3 with both X_1 and X_2 . In such a situation, one may want to know what the correlation between X_1 and X_2 would be if the effect of X_3 on each of X_1 and X_2 were eliminated. This correlation is called the partial correlation and the correlation coefficient between X_1 and X_2 the linear effect of X_3 on each of them has been eliminated is called the partial correlation coefficient.

3. What do you mean by multiple correlation coefficient? **Answer:**

In tri-variate distribution in which each of the variables X_1 , X_2 , and X_3 has N observations, the multiple correlation coefficient between X_1 on X_2 and X_3 is, usually denoted by $R_{1,23}$ is the simple correlation coefficient between X_1 and the joint effect of X_2 and X_3 on X_1 . In other words $R_{1,23}$ is the correlation coefficient between X_1 and its estimated value as given by the plane of regression of X_1 on X_2 and X_3

4. Write the formula for finding the partial correlation coefficient. **Answer:**

The formula for the partial correlation coefficient is given by,

$$r_{12.3} = \frac{(r_{12} - r_{13}r_{23})}{\sqrt{(1 - r_{13}^{2})(1 - r_{23}^{2})}}$$

Similarly we can obtain $r_{\rm 13.2}$ and $r_{\rm 23.1}$

5. Write the formula for obtaining the multiple correlation coefficient.

Answer:

The formula for finding the multiple correlation coefficient is given by,

$$R_{1.23}^{2} = \frac{r_{12}^{2} + r_{13}^{2} - 2r_{12}r_{13}r_{23}}{1 - r_{23}^{2}}$$

Similarly we can obtain the formula for $R_{2.13}^2$ and $R_{3.12}^2$.

Square root the expression gives the multiple correlation coefficient.

6. Write the formula for obtaining the partial regression coefficient.

Answer:

The formula for finding the partial regression coefficient is given by,

$$b_{12.3} = -\frac{\sigma_1 \omega_{12}}{\sigma_2 \omega_{11}}$$

7. Write the expression which gives the relation between partial and multiple correlation coefficient.

Answer:

 $1 - R_{1.23}^{2} = (1 - r_{12}^{2}) (1 - r_{13.2}^{2})$

8. If $r_{12} = 0.28$, $r_{23} = 0.49$ and $r_{13} = 0.51$, find $r_{23.1}$ and $r_{13.2}$ Answer:

$$r_{23.1} = \frac{(r_{23} - r_{21}r_{31})}{\sqrt{(1 - r_{21}^{2})(1 - r_{31}^{2})}} = \frac{(0.49 - 0.28 \times 0.51)}{\sqrt{(1 - 0.28^{2})(1 - 0.51^{2})}} = 0.42$$

$$r_{13.2} = \frac{(r_{13} - r_{12}r_{32})}{\sqrt{(1 - r_{12}^{2})(1 - r_{32}^{2})}} = \frac{(0.51 - 0.28 \times 0.49)}{\sqrt{(1 - 0.28^{2})(1 - 0.49^{2})}} = 0.446$$

9. From the data relating to the yield of dry bark (X₁), height (X₂) and girth (X₃) for 18 cinchona plants, the following correlation coefficients are obtained. $r_{12} = 0.77$, $r_{13} = 0.72$, $r_{23} = 0.52$ Find the partial correlation coefficient $r_{12,3}$ and multiple correlation coefficient $R_{1,23}$.

Answer:

We know that, partial correlation coefficient

$$r_{12.3} = \frac{(r_{12} - r_{13}r_{23})}{\sqrt{(1 - r_{13}^{2})(1 - r_{23}^{2})}} = \frac{(0.77 - 0.72 \times 0.52)}{\sqrt{(1 - 0.72^{2})(1 - 0.52^{2})}} = 0.62$$

To find multiple correlation coefficient, we have,

$$R_{1.23}^{2} = \frac{r_{12}^{2} + r_{13}^{2} - 2r_{12}r_{13}r_{23}}{1 - r_{23}^{2}} = \frac{0.77^{2} + 0.72^{2} - 2 \times 0.77 \times 0.72 \times 0.52}{1 - 0.52^{2}} = 0.7334$$

R_{1.23} =+0.8564 (since multiple correlation coefficient is non-negative)

10. Find r_{12} if $r_{13,2}=0.6$ and $R_{1,23}=0.8$

Answer: We know that $1-R_{1.23}^2 = (1-r_{12}^2) (1-r_{13.2}^2)$ By substitution, we get, $1-(0.8)^2 = (1-r_{12}^2) (1-(0.6)^2)$ On simplification, we get, $r_{12}^2 = 0.4375$ or $r_{12} = \pm 0.6614$

11. Is it possible to get the following set of experimental data? r_{23} =0.8, r_{31} =-0.5, r_{12} =0.6 **Answer:**

$$r_{12.3} = \frac{(r_{12} - r_{13}r_{23})}{\sqrt{(1 - r_{13}^{2})(1 - r_{23}^{2})}} = \frac{(0.6 - (-0.5 \times 0.8))}{\sqrt{(1 - (-0.5^{2})(1 - 0.8^{2}))}} = 1.9246 > 1$$

Hence the given set of experimental data is wrong.

12. In a tri-variate distribution, σ_1 = 2, σ_2 = σ_3 = 3, r_{12} = 0.7, r_{23} = r_{31} = 0.5 Find

- i. r_{23.1}
- ii. R_{1.23}
- iii. $b_{12.3}$ and $b_{21.3}$ and hence $r_{12.3}$
- iv. $\sigma_{1.23}$

Answer:

i. We know that, partial correlation coefficient

$$r_{23.1} = \frac{(r_{23} - r_{21}r_{31})}{\sqrt{(1 - r_{21}^{2})(1 - r_{31}^{2})}} = \frac{(0.5 - 0.7 \times 0.5)}{\sqrt{(1 - 0.7^{2})(1 - 0.5^{2})}} = 0.2425$$

ii. To find multiple correlation coefficient, we have,

$$R_{1.23}^{2} = \frac{r_{12}^{2} + r_{13}^{2} - 2r_{12}r_{13}r_{23}}{1 - r_{23}^{2}} = \frac{0.7^{2} + 0.5^{2} - 2 \times 0.7 \times 0.5 \times 0.5}{1 - 0.5^{2}} = 0.52$$

R_{1.23} =+0.7211 (since multiple correlation coefficient is non-negative)

iii. We know that,

$$b_{12,3} = -\frac{\sigma_1 \omega_{12}}{\sigma_2 \omega_{11}}, b_{21,3} = -\frac{\sigma_2 \omega_{21}}{\sigma_1 \omega_{22}}$$

Where $\omega = \begin{vmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0.7 & 0.5 \\ 0.7 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{vmatrix}$

From above determinant, $\omega_{11}=1-(0.5x0.5)=0.75$

$$\omega_{12} = -(0.7 - (0.5 \times 0.5)) = -0.45$$

 $\omega_{21} = -(0.7 - 0.5 \times 0.5) = -0.45$

 ω_{22} =1-0.25=0.75

Therefore

$$b_{12.3} = -\frac{2 \times (-0.45)}{3 \times 0.75} = 0.4, b_{21.3} = -\frac{3 \times (-0.45)}{2 \times 0.75} = 0.9$$

we know that form partial regression coefficients we get partial correlation coefficient as follows

$$r_{12.3} = \sqrt{b_{12.3}b_{21.3}} = \sqrt{0.4 \times 0.9} = 0.6$$

iv. We have
$$\sigma_{1,23} = \sigma_1 \sqrt{\frac{\omega}{\omega_{11}}}$$

Where ω is defined as earlier.

The value of ω is given by,

 $\omega = 1 - r_{12}^2 - r_{13}^2 - r_{23}^2 + 2r_{12} r_{13} r_{23}$

by substituting and simplifying, we get

 ω = 0.36 and we have already found that,

 $\omega_{11} = 0.75.$

Therefore, $\sigma_{1.23} = 2\sqrt{\frac{0.36}{0.75}} = 2 \times \sqrt{0.48} = 1.3856$

13. Find the regression equation of X_1 on X_2 and X_3 given the following results

Trait	Mean	S. D	r ₁₂	r ₂₃	r ₃₁
X ₁	28.02	4.42	+0.8	-	-
X ₂	4.91	1.1	-	-0.56	-
X ₃	594	85	-	-	-0.4

Where X_1 = seed per acre, X_2 = Rainfall in inches

X₃=Accumulated temperature above 42°F

Answer:

Regression equation of X1 on X2 and X3 is given by,

$$\frac{\omega_{11}}{\sigma_1}(X_1 - \overline{X}_1) + \frac{\omega_{12}}{\sigma_2}(X_2 - \overline{X}_2) + \frac{\omega_{13}}{\sigma_3}(X_3 - \overline{X}_3) = 0$$

Where
$$\boldsymbol{\omega} = \begin{vmatrix} 1 & r_{12} & r_{13} \\ r_{21} & 1 & r_{23} \\ r_{31} & r_{32} & 1 \end{vmatrix}$$

$$\omega_{11} = \begin{vmatrix} 1 & r_{23} \\ r_{32} & 1 \end{vmatrix} = 1 - r_{23}^{2} = 1 - (-0.56)^{2} = 0.686$$

Similarly, $\omega_{12}{=}r_{13}r_{23}-r_{21}$ = (-0.4) (-0.56)-(0.8) +=-0.576

$$\omega_{13} = r_{23}r_{12} - r_{13} = (-0.56)(0.8) - (-0.4) = -0.048$$

Therefore required equation of plane of regression of X_1 on X_2 and X_3 is given by

$$\frac{0.686}{4.42}(X_1 - 28.02) + \frac{-0.576}{1.1}(X_2 - 4.91) + \frac{-0.048}{85}(X_3 - 594) = 0$$

14. Five hundred students were examined in three subjects I, II and III, each subject carrying 100 marks.

The Coefficient of Correlation between pairs of subjects is given by,

 r_{12} =0.6, r_{13} =0.7, r_{23} =0.8

Assuming that the marks are normally distributed

- i. Find the correlation between marks in subjects I and II among students who scored equal marks in subject III
- ii. If r_{23} was not known, obtain the limits within which it may lie from the value of r_{12} and r_{13} (ignoring sampling error)

Answer:

The correlation between marks in subjects I and II among students who scored equal marks in subject III is $r_{12.3}$ and is given by,

$$r_{12.3} = \frac{(r_{12} - r_{13}r_{23})}{\sqrt{(1 - r_{13}^{2})(1 - r_{23}^{2})}} = \frac{(0.6 - 0.7 \times 0.8)}{\sqrt{(1 - 0.7^{2})(1 - 0.8^{2})}} = 0.0934$$

We have $r_{12.3}^{2} = \frac{(r_{12} - r_{13}r_{23})^{2}}{(1 - r_{13}^{2})(1 - r_{23}^{2})} \le 1$

Since r₂₃ is not known, we consider it as 'a'

$$\therefore \frac{(0.6 - 0.7a)^2}{(1 - 0.49)(1 - a^2)} \le 1$$

Implies, 0.36+0.49a² -0.84a≤0.51 (1 -a²)

Implies $a^2 - 0.84a - 0.15 \le 0$

Thus 'a' lies between the roots of the equation $a^2 - 0.84a - 0.15 = 0$ which are 0.99 and -0.15.

Hence r_{23} should lie between -0.15 and 0.99

15. A teacher in mathematics wishes to determine the relationship of marks on final examination to those on two tests given during the semester. Calling X₁, X₂ and X₃, the marks of a student in 1st, 2nd and final examination respectively, he made the following computations from a total of 120 students.

$$\overline{X}_1 = 6.8, \overline{X}_2 = 7.0, \overline{X}_3 = 74$$

 $\sigma_1 = 1$ $\sigma_2 = 0.8 \sigma_3 = 9$

r12=0.6, r13=0.7 and r23=0.65.

Find the least square regression equation of X_3 on X_1 and X_2

Estimate the final marks of two students who scored respectively 9 and 7, 4 and 8 on two tests.

Answer:

The least square regression equation of X_3 on X_1 and X_2

 $X_3 = a_{3.12} + b_{31.2}X_1 + b_{32.1}X_2$

The regression equation of X_3 on X_1 and X_2 in the deviation form can be written as

 $x_3 = b_{31.2}x_1 + b_{32.1}x_2$

Where
$$x_3 = X_3 - \overline{X_3}, x_1 = X_1 - \overline{X_1}, x_2 = X_2 - \overline{X_2}$$

$$b_{31.2} = \frac{\sigma_3}{\sigma_1} \frac{r_{31} - r_{32}r_{12}}{1 - r_{12}^2} = \frac{9}{1} \frac{0.7 - (0.65)(0.6)}{1 - 0.6^2} = 4.36$$

$$b_{32.1} = \frac{\sigma_3}{\sigma_2} \frac{r_{31} - r_{32}r_{12}}{1 - r_{12}^2} = \frac{9}{0.8} \frac{0.65 - (0.7)(0.6)}{1 - 0.6^2} = 4.04$$

The regression equation of X_3 on X_1 and X_2 is given by

$$X_3 - 74 = 4.36(X_1 - 6.8) + 4.04(X_2 - 7)$$

Implies, $X_3 = 16.07 + 4.36X_1 + 4.04X_2$

Final marks of students who scored 9 and 7 marks, i.e., substituting $X_1=9$ and X=7, in the above regression equation, we get,

 $X_3 = 16.07 + 4.36(9) + 4.04(7) = 83.59 \text{ or } 84.$

Final marks of students who scored 4 and 8 marks, i.e., substituting $X_1=4$ and $X_2=8$, in the above regression equation, we get,

 $X_3 = 16.07 + 4.36(4) + 4.04(8) = 65.8 \text{ or } 66.$