
1.  Introduction  &  Usefulness  of 
Moment Generating Function 
Welcome to the series of E-learning modules on moment generating functions or mgf,  its 
uses, properties and limitations. Here we have also proved the uniqueness of mgf and using 
mgf we have obtained Cumulant generating function and hence Cumulants.  

At the end of this session, you will be able to: 

• Understand about moment generating function

• Understand the uses of moment generating functions 

• Describe the properties of moment generating functions 

• Describe the limitations of moment generating functions 

• Explain Uniqueness theorem and 

• Obtain moments from Cumulant generating function 

Introduction 
In probability theory and statistics, the moment generating function of a random variable is an 
alternative  specification  of  its probability  distribution.  Thus,  it  provides  the  basis  of  an 
alternative route to analytical results compared with working directly with probability density 
functions or cumulative distribution functions.
There  are  particularly  simple  results  for  the  moment-generating  functions  of  distributions 
defined by the weighted sums of random variables.

� Note, however, that not all random variables have moment-generating functions
� In addition to univariate distributions, moment-generating functions can be defined 

for vector- or matrix-valued random variables, and can even be extended to more 
general cases

Now let us discuss the usefulness of moment generating function.
Moment generating function is useful  in  many ways: 

(a) They provide  an  easy  way  of  calculating  the  moments  of  a  distribution
(b)  They  provide  some  powerful  tools  for  addressing  certain  counting  and 

combinatorial  problems
(c)  They provide  an  easy  way  of  characterizing  the  distribution  of  the  sum  of 

independent  random  variables
(d) They provide  tools  for  dealing  with  the  distribution  of  the  sum of a random 

number  of  independent  random  variables
(e) They play  a  central  role  in  the  study  of  branching processes
(f)   They  play  a  key  role  in  large  deviations  theory,  that  is,  in  studying  the 

asymptotics  of  tail  probabilities  of  the  form  P(X ≥ c),  when  c is  a  large 
number

(g)  They provide  a  bridge  between  complex  analysis  and  probability,  so  that 
complex  analysis  methods  can  be  brought  to  bear  on  probability  problems

(h) They  provide  powerful  tools  for  proving  limit  theorems,  such  as  laws  of large 
numbers  and  the  central  limit  theorem 



2. Moment Generating Functions 
The moment generating function or m g f. of a random variable X (about origin) having the 
probability density function f of (x) is given by,
M X of t is equal to expectation of e power t X
Is equal to integral of e power t x into f of x d x

The integration being extended to the entire range of x, t being the real parameter and it is 
being assumed that  the right  hand side  of  the  moment  generating function  is  absolutely 
convergent for some positive number h such that minus h less than t less than h

Thus M X of t is equal to expectation of e power t X
Is equal to expectation of one plus t into X plus t square into X square divided by two factorial 
plus etc., plus t power r X power r divided by r factorial plus etc.
Is equal to one plus t into expectation of X plus t square by two factorial into expectation of X 
square plus and so on plus, t power r divided by r factorial into Expectation of X power r plus 
etc.
Is equal to q plus t into mu one dash plus t square by two factorial into mu two dash plus etc., 
plus t power r by r factorial into mu r dash plus etc.
Is equal to summation over r is equal to zero to infinity t power r divided by r factorial into mu r 
dash

Where mu r dash is equal to integral over x, x power r into f of x d x is the rth moment of X 
about origin.  Thus the coefficient of t power r divided r factorial in M X of (T) gives mu r dash 
(about  origin).   Since M X of  (t)  generates moments,  it  is  known as moment  generating 
function. 

Given the moment generating function we can also find moments by differentiating it  with 
respect of t, r times and then putting t is equal to zero.
That is, r th derivative d power r d t power r M X of t at t is equal to zero
Is equal to mu r dash divided by r factorial into r factorial plus mu r plus one dash into t plus 
mu r plus two dash into t square divided by two factorial plus etc., at t is equal to zero
Implies, mu r dash is equal to d power r by d t power r M X of t at t is equal to zero.

In general, the moment generating function X about the point X is equal to ‘a’ is defined as,
M X of t about X is equal to ‘a’ 
Is equal to Expectation of ‘e’ power t into X minus A
Is equal to Expectation of one plus t into X minus a plus t square into X minus ‘a’ the whole 
square divided by two factorial plus etc. plus t power r into X minus ‘a’ power r divided by r 
factorial plus and so on.
Is equal to one plus t into mu one dash plus t square divided by two factorial into mu two 
dash plus etc., plus t power r divided by r factorial into mu r dash plus and so on.
Where mu r dash is equal to Expectation of X minus a whole power r is the rth moment about 
the point X is equal to ‘a’.  



3. Limitations of MGF
Now let us discuss some of the limitations of moment generating function.
Moment generating function suffers from some drawbacks which have restricted its use in 
Statistics. Below are the some of the deficiencies of moment generating function .We have 
discussed these in detail in the first semester.

i. A random variable X may have no moments although its mgf exists
ii. A random  variable  X  can  have  moment  generating  function  and  some  (or  all) 

moments, yet the moment generating function does not generate the moments
iii. A random variable X can have all or some moments but mgf does not exist except 

perhaps at one point

Consider the following illustration
Show that for the following distribution with probability density function f of x is equal to theta 
into a power theta divided by x power theta plus one where x is greater than or equal to a and 
theta is greater than one, the moments of all order exists but moment generating function 
does not exist. 

Proof 
Now consider rth raw moment 
Mu r dash is equal to expectation of x power r  is equal to theta into ‘a’ power theta into 
integral over ‘a’ to infinity x power r minus theta minus one d x. This is equal to theta into ‘a’ 
power theta into x power r minus theta divided by r minus theta, ranges from ‘a’ to infinity
This is equal to theta into a power r divided by theta minus r, where theta is greater than r.
Hence rth raw moment exists.

Now let us consider the moment generating function of the given distribution.
M X of t is equal to expectation of ‘e’ power t X is equal to theta into ‘a’ power theta into ‘e’ 
power t x divided by x power theta plus one d x, Which does not exist. Since ‘e’ power t into x 
dominates x power theta plus one and (e power t into x divided by x power theta plus one) 
tends to infinity and hence the integral is not convergent.  That is moment generating function 
for the given distribution does not exist. 



4. Properties of MGF
Properties 
Now let us discuss some of the properties of moment generating function which holds good 
for continuous as well as discrete random variables.
The first property is stated as follows.
M c into X of (t) is equal to M X of (c into t), c being a constant.
Let us prove this as follows.
By Definition, left hand side
Is equal to M c into X of (t) is equal to Expectation of (e power t into (c into X))
Is equal to Expectation of (e power (t into c) into X) 
Is equal to M X of c into t which is equal to right hand side.
Hence the proof. 

Second property is given as follows.
The moment generating function of the sum of the independent random variables is equal to 
the product of their respective moment generating functions.  Symbolically, if x one, x two, x 
three, etc till x n are independent random variables, then the moment generating function of 
their sum x one plus x two plus x three and so on till plus  x n is given by,
M  x one  plus x two plus etc., plus  x n of (t) is equal to M X one of (t) into M X two of (t) into 
etc., into M X n of (t)

Proof: By definition,
M  x one  plus x two plus and so on till plus x n of (t) is equal to 
Expectation of e power t into x one  plus X two plus and so on till plus X n)
Is equal to Expectation of (e power t into X one  plus t into X two plus etc., plus t into X n)
Is equal to Expectation of e power t into X one into Expectation of e power t into X two into etc 
into Expectation of (e power t into X n)
Is equal to M X one of t into M X two of t into etc., into M X n of t. 

Third  property  is  about  the  effect  of  change  of  origin  and  scale  on  moment  generating 
function.
Let  us transform X to the new variable U by changing both the origin and scale in X as 
follows.
U is equal to X minus a divided by h, where ‘a’ and ‘h’ are constants.

Moment generating function of U (about origin) is given by 
M U of t is equal to expectation of ‘e’ to  the power t into U
Is equal to Expectation of {exponential of [t into (x minus a) divided by h]}
Is equal to Expectation of (e to the power ‘t’ into x divided by h into e to the  power minus ‘a’ 
into ‘t’ divided by ‘h’) 
Is equal to ‘e’ power minus ‘a’ into ‘t’ divided by ‘h’ into Expectation of e power t into X divided 
by h
Is equal to e power minus ‘a’ into t divided by h into Expectation of e power X into t by h
Is equal to e power minus ‘a’ into t divided by h into M u of t by h.
Where M X of (t) is the moment generating function of X about origin. 



In particular, if we take ‘a’ is equal to Expectation of (X) is equal to mu and h is equal to sigma 
X is equal to sigma then U is equal to [X minus Expectation of (X)] divided by sigma X is 
equal to (X minus mu) divided by sigma is equal to Z is known as a standard variate.  Thus 
moment generating function of a standard variate Z is given by, 
M Z of t is equal to e power minus mu into t divided by sigma into M X of t divided by sigma

Form the above note that,
Expectation of Z is equal to expectation of X minus mu divided by sigma is equal to one by 
sigma into expectation of X minus mu
This is equal to one by sigma into expectation of x minus mu
This is equal to one divided by sigma into mu minus mu which is equal to zero.
And variance of Z is equal to Variance of X minus mu divided by sigma
Is equal to one by sigma square into Variance of X minus mu
Is equal to one divided by sigma square into Variance of X
Is equal to one divided by sigma square into sigma square, which is equal to one.
Therefore expectation of Z is equal to zero and Variance of Z is equal to one.  That is, mean 
and variance of a standard variate are 0 and one respectively.



5. Uniqueness Theorem 

Now let us consider the uniqueness theorem of moment generating function.
The  moment  generating  function  of  a  distribution,  if  it  exists,  uniquelly  determines  the 
distribution.
This implies that corresponding to a given probability distribution, there is only one moment 
generating  function  (provided  it  exists)  and  corresponding  to  given  moment  generating 
function there is only one probability distribution.  
Hence M X of (t) is equal to M Y of (t) implies X and Y are identically distributed. 

Proof 
If  X and Y are two random variables with probability density functions f of (x) and f of (y) 
respectively.  Let moment generating function of two distributions are given by, M X of (t) and 
M Y of (t) respectively.  We need to prove that if M X of t is equal to M Y of (t) then f of (x) is 
equal to f of (y).

We know that moment generating function of X and Y are given by
M  of (t) is equal to Expectation of e power t into X is equal to integral over X e power t into X f  
of x d x and 
M Y of (t) is equal to Expectation of (e power t into Y) is equal to integral over Y e power t into 
Y f of (y) d y 
If M X of (t) is equal to M Y of (t) implies,
integral over X e power t into X f of x d x 
is equal to integral over Y e power t into Y f of (y) d y 
Which implies f of (X) is equal to f of (y)
That is X and Y are identically distributed. 

Cumulant generating function of the distribution is obtained from moment generating function 
and is denoted by K X of (t) and is given by,
K X of (t) is equal to log M X of (t) to the base e, provided the right hand side of the equation 
can be expanded as a convergent series in powers of t.  

Thus 
K X of t is equal to k one into y plus k two into t square divided by two factorial plus and so on 
till, plus k r into t power r divided by r factorial plus and so on , is equal to log M X of t to the 
base ‘e’.
This is equal to log mu one dash into t plus mu two dash into t square divided by two factorial 
plus etc till, plus mu r dash into t power r divided by r factorial plus etc.
Where k r is equal to coefficient of t to the power r divided by r factorial in K X of (t) is called 
rth Cumulant.  

Hence 
K one into t plus k two into t square divided by two factorial plus k three into t cube by three 
factorial plus k four into t power four divided by four factorial plus and so on,
Is equal to mu one dash into t plus mu two dash into t square divided by two factorial plus mu 
three dash into t cube divided by three factorial plus mu four dash into t power four divided by 
four factorial 



Minus half into mu one dash into t plus mu two dash into t square divided by two factorial plus 
mu three dash into t cube divided by three factorial plus mu four dash into t power four divided 
by four factorial
Plus one divided by three into mu one dash into t plus mu two dash into t square divided by 
two factorial plus mu three dash into t cube divided by three factorial plus mu four dash into t 
power four divided by four factorial
Minus one divided by four into mu one dash into t plus mu two dash into t square divided by 
two factorial plus mu three dash into t cube divided by three factorial plus mu four dash into t 
power four divided by four factorial
Plus and so on 

Comparing the powers of t on both sides, we get the relationship between the moments and 
Cumulants. Hence we have
K one is equal to mu one dash is equal to Mean 
K two divided two factorial is equal to mu two dash divided by two factorial plus mu one dash 
square divided by two factorial
This implies, k two is equal to mu two dash plus mu one dash square is equal to mu two.
K three divided by three factorial is equal to mu three dash divided by three factorial minus 
half  into mu one dash into mu two dash divided by two factorial plus mu one dash cube 
divided by three
Which implies k three is equal to mu three dash minus three into mu two dash into mu one 
dash plus two into mu one dash cube is equal to mu three.

Also
K four divided by four factorial is equal to mu four dash divided by four minus half into mu two 
dash square divided by four plus two into mu one dash into mu three dash divided by three 
factorial  plus one divided by three into three into mu one dash square into mu two dash 
divided by two factorial plus mu one dash to the power four divided by four.
On simplification we get,
 k four is equal to mu four dash minus four into mu three dash into mu one dash plus six  into 
mu two dash into mu one dash square minus three into mu one dash to the power four minus 
three into mu two dash minus mu one dash square the whole square.
Hence k four is equal to mu four minus three k two square
Implies mu four is equal to k four into three k two square.

Here’s a summary of our learning in this session where we have:

• Understood about moment generating functions

• Understood the  uses of moment generating functions

• Explained the Properties and limitations of mgf

• Understood the Uniqueness theorem

• Understood how to obtaining moments from Cumulant generating function


