
1. Introduction
Welcome to the series of e-learning modules on Bayes’ Theorem and its Applications. In this 
module we will be introduced to Bayes’ theorem and the topic will cover the proof of the 
theorem for two and more number of prior events, difference between prior and posterior 
probability and the practical applications of Bayes’ Theorem. 

By the end of this session, you will be able to explain: 

• Baye’s Theorem 

• Conditional & posterior probability 

• Extension of the theorem and its proof 

• Probability for another future event 

• Theorem for two random variables 

• Fields of application of the theorem 

• Applications of the theorem 

One of the most interesting applications of the results of probability theory involves estimating 
unknown probabilities and making decisions on the basis of new information. 
Since World War II , a considerable amount of knowledge has been developed known as the 
Bayesian Decision Theory whose purpose is to solve problems involving decision making 
under uncertainty. 

The concept of conditional probability takes into account information about the occurrence of 
one event to predict the probability of another. 
This concept can be extended to revise probabilities based on new information and to 
determine the probability that a particular effect was due to specific cause. 
The procedure of revising these probabilities is known as Bayes’ theorem. 

Bayes’ theorem was named after the British Mathematician Reverend Thomas Bayes and 
published in 1763. 
This is one of the most famous memoirs in the history of science. 

The so-called ‘Bayesian’ approach to this problem addresses itself to the question of 
determining the probability of some event, A, given that another event B, has been observed. 
That is, determining the value of Probability of ‘A’, given the value B. 
The event A is usually thought of as sample information so that Bayes’ rule is concerned with 
determining the probability of an event given certain sample information. 



2. Probability Revision Process
Revising probabilities when new information is obtained is an important phase of probability 
analysis. 
The steps in this probability revision process are shown in the below:
Step 1: Prior Probabilities
Step 2: New Information
Step 3: Application of Bayes’ Theorem and
Step 4: Posterior Probabilities

For example, A sample output of 2 defectives in 50 trials, say, event A, might be used to 
estimate the probability that a machine is not working correctly, say, event B.
OR 
You might use the results of your first examination in statistics, again say, event A, as sample 
evidence in estimating the probability of getting a first class in say, event B.
Bayes’ theorem is based on the formula for conditional probability.

Let A1 and A2 equal to the sets of events which are manually exclusive and exhaustive and,
B equal to a simple event which intersects each of the A events as shows in the diagram.
Observe the diagram. 
The part of B which is within A1 represents the area ' A1 and B‘, and the B within A2 represents 
the area ' A2 and B‘. 

Hence the probability of event A1 given event B is: 
Probability of A1 intersection B divided by Probability of B.
Similarly the probability of event A2 given event B is: Probability of A two intersection B divided 
by Probability of B.

Where, Probability of B is equal to Probability of A1 intersection B plus probability of A2 
intersection B,
Probability of A1 intersection B equals to  Probability of A1 into Probability of B given A1, and
Probability of A2 intersection B equals to Probability of A2 into Probability of B given A2.

Hence, Probability of A1 given B is equal to Probability of A1 into Probability of B given A1 

divided by Probability of A1 into Probability of B given A1 plus Probability of A2 into Probability of 
B given A2. 

Let E1, E2, E3 etc… En be a set of ‘n’ mutually exclusive events with Probability of Ei not equal 
to zero and i equal to 1 to n, then for any arbitrary event ‘A’   which is a subset of  Union of Ei 
and i equal to 1 to n such that probability of A is greater than zero, we have:
Probability of Ei given A is equal to Probability of Ei into Probability of A given Ei divided by the 
sum of Probability of Ei into Probability of A  given Ei, i runs from 1 to n. 

Since A is the subset of Union of Ei, A is equal to A intersection union Ei equal to 1 to n 
Equals to Union i equal to 1 to n A intersection Ei , by distributive law.
Now, since A intersection Ei where i from 1 to n are mutually exclusive events 
Applying addition theorem of Probability or Axiom three of Probability we have,
Probability of A is equal to Probability of union (i from  1 to n) A intersection Ei 



Is equal to summation (i from 1 to n) Probability of A intersection  Ei 
Equals to summation (i from 1 to n) Probability of Ei multiplied by Probability of A given Ei. 
Call this as star.
Also, we have 
Probability of A intersection is equal to Probability of A multiplied by Probability  of  Ei given A, 
and
Probability   of  Ei given A equals to Probability  of A intersection  Ei divided  by    Probability 
of A
This is equal to: 
Probability of Ei into Probability of A given Ei divided by the summation of Probability of Ei into 
Probability of A given Ei where i runs from 1 to n from the equation star.



3. Bayes’ Theorem for Future 
Events
Bayes’ theorem for future events:
The probability of the materialization of another event C given by 
Probability of C given A intersection E1, Probability of C given A intersection E2, etc 
Probability of C given A intersection En is  
Probability of C given A is equal to summation, i running from 1 to n
Probability of Ei into Probability of A given Ei into Probability of C given A intersection Ei 
divided by summation i running from 1 to n Probability of Ei into Probability of A given Ei.

Bayes’ Theorem for two random variables
Consider a sample space omega generated by two random variables X and Y. In principle, 
Bayes' theorem applies to the events.
A is equal to X equals to x and B is equal to Y equals to y
If X is continuous and Y is discrete,
f of x given Y equals to y is equal to
Probability of Y equals to y given X equals to x into f of x divided by Probability of Y equals to 
y.

If X is discrete and Y is continuous,
Probability of X equals to x given Y equals to y is equal to f of y given X equals to x into 
Probability of X equals to x divided by f of y.
If both X and Y are continuous,
f of x given Y equals to y is equal to
f of y given X equals to x into f of x divided by f of y.

Probabilities before revision by Bayes’ rule are called a priori or simply prior probability 
because they are determined before the simple information is taken into account.
A probability which has undergone revision in the light of sample information using Bayes’ rule 
is called posterior probability, since it represents the probability calculated after this 
information is taken into account.

Posterior probabilities are also called revised probabilities because they are obtained by 
revising the prior probabilities in the light of the additional information gained. 
Posterior probabilities are always conditional probabilities, the conditional event being the 
sample information. Thus a prior probability which is unconditional becomes a posterior 
probability which is a conditional probability by using Baye’s rule.

The revision of the old probabilities in the light of the additional information supplied by the 
experiment, or the past records, is of extreme help in arriving at valid decisions in the face of 
uncertainty.
It may be pointed out that the classical theory is mainly empherical since it employs only 
sample information as the basis for estimation and testing while, the Bayesian approach 
employs any and all available information whether it is personal judgment or empirical 



evidence 

Frequentist and Bayesian approaches both use probability to make Statistical inferences, but 
they use and interpret probability in very different ways.   
A frequency probability is a property which applies to chance events.  A Bayesian probability, 
in contrast, is a mental construct that represents uncertainty.  It applies not directly to events, 
but to our knowledge of them, and can thus be used in determinate situations. 

Further inference based on Bayesian rule can be made on prior information alone or on both 
prior and sample information. 
The term ‘prior information’ implies a type of information which a statistician or a decision 
maker has on an inferential problem before any sampling is conducted.
Prior information often consists of personal judgments of the situation, because of which 
Bayesian method can actually be considered as an extension of the classical approach.

Some interesting points to be noted are:
Though Bayes’ rule deals with a conditional probability, its interpretation is different from that 
of the general conditional probability theorem. 
The general conditional probability asks:
“What is the probability of the sample or experimental result given the state value”? 
Whereas Bayes’ theorem asks: 
“What is the probability of the event given the sample or experimental result”



4. Computation Methods
When we use Bayes’ theorem, different decision makers may assign different probability to 
the same set of states of nature. Also we may conduct a new experiment by using posterior 
probabilities of the preceding experiment as the prior probabilities. As we proceed with the 
repeated experiments, evidence accumulates and modifies the initial priori probabilities, 
thereby modifying the intensity of a decision-maker’s belief in various states of nature. 

The notion of priori and posterior in Bayes’ theorem are relative to a given sample outcome. 
That is, if a posterior distribution has been determined from a particular sample this posterior 
distribution would be considered the prior distribution relative to a new sample. 

The Tabular Approach is helpful in conducting the Bayes’ theorem calculations simultaneously 
for all events Ei. 
The computation involves 4 steps. 

Step 1: Prepare the three columns:
Column 1 - The mutually exclusive events for which posterior probabilities are desired.
 Column 2 - The prior probabilities for the events.
 Column 3 - The conditional probabilities of the new information given each event.

Step 2: Compute Joint Probabilities:
In column 4, compute joint probabilities for each event and new information A by using the 
multiplication law. 
To get these joint probabilities, multiply the prior probabilities in column 2 by corresponding 
conditional probabilities in column 3. 
That is, Probability of  E1 intersection  A is equal to 
Probability of E1 multiplied by probability of A given E1.

Step 3: Sum of Joint Probabilities:
In this step, sum up the joint probabilities in column 4 to obtain the probability of the new 
information, P of A. 

Step 4: Create Column 5:
In column 5, compute the posterior probabilities by using the basic relationship of conditional 
probability. 

Bayesian methods are increasingly being applied in a diverse assortment of fields, including 
science, business, law, medicine, engineering, sociology, psychology, artificial intelligence, 
and philosophy.  
Bayes’ Theorem can be used in Internet marketing to track profile visitors to a Website. 
Bayes' methods are applied to both virtual screening and the chemical biology arena, where 
applications range from bridging phenotypic and mechanistic space of drug action to the 
prediction of ligand-target interactions.



5. Areas of Application
Bayesian statistical analysis is useful in business and political applications involving actual 
and opportunity costs where decisions often must be made under uncertain conditions. 
Bayesian theorem is particularly helpful in financial modelling, solving pricing problems in 
foreign exchange trading and to solve social policy-making problems.
Bayesian rule holds similar promise for researchers of business and management problems.

Here is an example.
Assume that a factory has two machines.
Past records shows that Machine-I produces 30% of the items of the output and Machine-II 
produces 70% of the items. 
Further 5% of the items produced by Machine-I were defective and only 1% produced by 
Machine -II were defective. 
If a defective item is drawn at random, what is the probability that the defective item was 
produced by Machine-I or Machine-II?

Solution:
Let, E1 be the event of drawing an item produced by Machine-I, 
E2  be the event of drawing an item produced by Machine-II, and
A be the event of drawing a defective item produced by  the machines 
Then from the given information 
Prior probabilities are: 
Probability of E1 is equal to  30 percent, that is 0.30, and 
Probability of E2 is equal to 70 percent that is 0.70. 

From the additional information
Conditional probabilities
Probability of A given E1 is equal to 5 percent equal to 0.05
Probability of A given E2 is equal to 1 percent equal to 0.01
Probability of E1 given A is equal to Probability of E1 into Probability of A given E1 divided by 
the sum of Probability of Ei into Probability of A given Ei where i runs from 1 to 2.
Probability of E1 given A equals to 0.30  into 0.05 divided by the product of 0.30 and  0.05 
plus the product of 0.70 and 0.01
Which equals to 0.682, which is 68.2 percent. 

Probability of E2 given A is equal to Probability of E2 into Probability of A given E2 divided by 
the sum of  Probability of Ei into Probability of A  given Ei  where i runs from one to two 
Probability of E2 given A equals to 0.70 into 0.01 divided by the product of 0.30 and 0.05 plus 
the product of 0.70 and 0.01 . 
Which equals to 0.318, which is 31.8 percent. 
Here, note that without the additional information we may be inclined to say that the defective 
item is drawn from Machine-II output since Probability of E2 is 70 percent, which is larger than 
Probability of E1 which is 30 percent. 

With the additional information we may give a better answer  
The probability that the defective item was produced by Machine-I is  68.2 percent,  



and that by Machine-II is only 31.8 percent.
Hence, we may now say that the defective item is more likely drawn from the output produced 
by Machine-I.

Here is another example.
Suppose a drug test is 99% sensitive and 99% specific. That is, the test will produce 99% true 
positive results for drug users and 99% true negative results for non-drug users. Suppose that 
0.5% of people are users of the drug. If a randomly selected individual tests positive, what is 
the probability he or she is a user? 

Now, let E1 be the event that people are drug-users  
E2 be the event that people are non- drug users, and 
A be the event that individual tests positive. 
Then from the given information:
Prior probabilities are 
Probability of E1  is equal to  0.5 percent,  equals to  .005
Probability of E2  is equal to .095 percent  equals to 0.995.
From the additional information,
Conditional probabilities:
Probability of A given E1 is equal to .99
Probability of A given E2 is equal to .01

Probability that the selected individual is a drug user whose test turns out to be positive can 
be computed as follows:
Probability of E1 given A is equal to Probability of E1 into Probability of A given E1 divided by 
the sum of  Probability of Ei into Probability of A  given Ei  where i runs from one  to two
Probability of E1 given A equals to .005 into .99 divided by the product of  .005 and .99 plus 
the product of .995 and 0.01.
Which is equal to 0.332
That is, approximately 33.2 percent.

Despite the apparent accuracy of the test, if an individual tests positive, it is more likely that 
they do not use the drug than that they do.
This surprising result arises because the number of non-users is very large compared to the 
number of users, such that the number of false positives which is 0.995 percent outweighs the 
number of true positives which is 0.495 percent.

Here’s a summary of our learning in this session:
o Statement and proof of Bayes’ Theorem

o Proof of theorem for the extended form

o Theorem for two random variables

o Difference between conditional and posterior probability

o Tabular approach to compute posterior probabilities using Bayes’ rule

o Fields of applications of the theorem


