FAQs

1. Determine the rate of water evaporated from a tray full of water. Air at a velocity of 2 m/s is flowing over the tray. The temperature of water and air is 25 °C. The width of the tray is 45 cm and its length along the direction of air flow is 20 cm. The diffusivity of water vapor in air is $D = 0.26 \times 10^{24} \text{ m}^2/\text{s}$. The relative humidity of air is 50%.

{Hint: use

$$N_{Sh} = \frac{k_m L}{D_{AB}} = 0.664 (N_{Re})^{1/2} (N_{Sc})^{1/3}$$

Solution:

Reynolds number, $N_{Re} = (2 \times 0.2)/(16.14 \times 10^{-6}) = 24,783$ Hence it is a laminar flow

We know $N_{Sh} = \frac{k_m d_c}{D_{AB}} = 0.664 (N_{Re})^{1/2} (N_{Sc})^{1/3}$ $N_{Sc} = v/D_{AB} = (16.14 \times 10^{-6})/(0.26 \times 10^{-4}) = 0.62$ $(k_m \times 0.2)/(0.26 \times 10^{-4}) = 0.664(24783)^{1/2}(0.62)^{1/3}$ $k_m = 1.1587 \times 10^{-2} \text{ m/s}$

The evaporation rate for the tray is, $\dot{m}_A = k_m A(C_{A,s} - C_{A,\infty})$

C_{A,s} is the concentration under saturated conditions

$$C_{A,s} = \rho_{A,s} = 0.02298 \text{ kg/m}^3$$

where $C_{A,\infty}$ is the concentration of water in the free stream; since relative humidity is 50%, then

$$\rho_{A,\infty} = (0.5)(0.02298) = 0.01149 \text{ kg/m}^3$$

 $\dot{m}_A = (1.1587 \text{ x } 10^{-2} \text{ x } 0.45 \text{ x } 0.2) \text{ x } (0.02298 - 0.01149)$
 $= 1.1982 \text{ x } 10^{-5} \text{ kg/s}$

The water evaporation rate from the tray is 0.043 kg/h.

2. Estimate the osmotic pressure of orange juice with 11% total solids at 20 °C

Solution

The Van't Hoff equation is used for computation, $\Pi = \frac{cRT}{M}$

The density of orange juice is estimated based on density of carbohydrates at 1593 kg/m³.

$$\label{eq:rho} \begin{split} \rho &= 0.11(1593) + 0.89(998.2) \\ &= 1063.6 \ \text{kg/m}^3 \end{split}$$

The concentration, c becomes

 $c = 0.11 \text{ x } 1063.6 = 117 \text{ kg solid/m}^3 \text{ product}$

 $\Pi = (117 \text{ x } 8.314)/180 = 1583.5 \text{ kPa}$

3. Osmotic pressures of some food materials are given below in the table

Table: Osmotic pressure of foods and food constituents at room temperature		
Food	Concentration	Osmotic pressure (kPa)
Milk	9% solids-not-fat	690
Whey	6% total solids	690
Orange juice	11% total solids	1587
Apple juice	15% total solids	2070
Grape juice	16% total solids	2070
Coffee extract	28% total solids	3450
Lactose	5% w/v	380
Sodium chloride	1% w/v	862
Lactic acid	1% w/v	552

4. The concentration of whey is being accomplished by using an ultrafiltration membrane to separate water. The 10 kg/min feed stream has 6% total solids and is being increased to 20% total solids. The membrane tube has a 5-cm inside diameter, and the pressure difference applied is 2000 kPa. Estimate the flux of water through the membrane and the length of the membrane tube when the permeability constant is 4×10^{-5} kg water/(m² kPa s).

Solution

Using a mass balance on the membrane system, feed stream = water flux + concentrated product

 $10 = N + N_p$

 $10(0.06) = N_p(0.2)$

 $N_p = 3$ kg/min of concentrated product

Then

N = 7 kg/min of water through membrane

Using equation $N = KA\Delta P$

 $A = 7/(4 \times 10^{-5} \times 2000 \times 60) = 1.46 \text{ m}^2$

Since d = 0.05 m

 $L = 1.46/(\pi \ge 0.05) = 9.28 \text{ m}$