
Conductive and Convective Heat Transfer 
 

 
1. Steady-State Heat Transfer 

 
In problems involving heat transfer, we often deal with steady state and unsteady state (or 
transient) conditions. Steady-state conditions imply that time has no influence on the temperature 
distribution within an object, although temperature may be different at different locations within 
the object. Under unsteady-state conditions, the temperature changes with location and time. 
 
 
1.1 Conductive Heat Transfer in a Rectangular Slab 
 

 
Figure 1:  Heat transfer in a wall, 
also shown with a thermal 
resistance circuit 

Consider a slab of constant cross-sectional area, as shown in 
Figure 1. The temperature, T1, on side X is known. We will 
develop an equation to determine temperature, T2, on the 
opposite side Y and at any location inside the slab under 
steady-state conditions. This problem is solved by first 
writing Fourier’s law, 
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The boundary conditions are 
x = x1 ;  T = T1 
x = x2 ;  T = T2  
Separating variables in Equation (1), we get 
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Integrating Eq. (2) 
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Temperature on face Y is T2; thus, rearranging Equation (5), 
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To determine temperature, T, at any location, x, within the slab, we may replace T2 and x2 with 
unknown T and distance variable x, respectively, in Equation (6) and obtain, 
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If we rearrange Eq. (5) 
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Thermal resistance may be expressed as 
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1.2 Conductive Heat Transfer through a Tubular Pipe 
 
Consider a long, hollow cylinder of inner radius ri, outer radius ro, and length L, as shown in 
Figure 2. Let the inside wall temperature be Ti and the outside wall temperature be To. We want 
to calculate the rate of heat transfer along the radial direction in this pipe. Assume thermal 
conductivity of the metal remains constant with temperature. 

 
 
 
 
 
 
 



 
Figure 2: Heat transfer in a radial direction in a pipe, also shown with a thermal resistance 
circuit. 
 
Fourier’s law in cylindrical coordinates may be written as 
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where qr is the rate of heat transfer in the radial direction. Substituting for circumferential area of 
the pipe, 
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The boundary conditions are 
 
T = Ti ;  r = ri 
T = To ;  r = ro  
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In terms of thermal resistance 
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1.3 Heat Conduction in Multilayered Systems 
 
1.3.1 Composite Rectangular Wall (in Series) 
 
We will now consider heat transfer through a composite wall made of several materials of 
different thermal conductivities and thicknesses. An example is a wall of a cold storage, 
constructed of different layers of materials of different insulating properties. All materials are 
arranged in series in the direction of heat transfer, as shown in Figure 3. 
 

 
 

Figure 3: Conductive heat transfer in a composite rectangular wall, also shown with a thermal 
resistance circuit. 
 
Using Fourier’s law, for materials B, C, and D, we have 
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or, using thermal resistance values for each layer, we can write Eq. (22) as 
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1.3.2 Composite Cylindrical Tube (in Series) 
 
Figure 4 shows a composite cylindrical tube made of two layers of materials, A and B. An 
example is a steel pipe covered with a layer of insulating material. The rate of heat transfer in 
this composite tube can be calculated as follows. 
 
From Eq. (16) we know that 
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The rate of heat transfer through a composite cylinder using thermal resistances of the two layers 
is 
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or, substituting the individual thermal resistance values, 
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Figure 4: Conductive heat transfer in 
concentric cylindrical pipes, also shown with a 
thermal resistance circuit. 

 

 

 
 

2. Estimation of Convective Heat-Transfer Coefficient 
 
Determination of the rate of heat transfer due to convection is complicated because of the 
presence of fluid motion. In the module of fluid flow in food processing we have studied that a 
velocity profile develops when a fluid flows over a solid surface because of the viscous 
properties of the fluid material. 
 
Similar to the velocity profile, a temperature profile develops in a fluid as it flows through a 
pipe, as shown in Figure 5.  
 

 

 
Figure 5: Thermal entry region in fluid flowing in a pipe 

 
Empirical approach  
 
This is widely used to determine the rate of convective heat transfer. A drawback of the 
empirical approach is that it requires a large number of experiments to obtain the required data. 
 



We overcome this problem and keep the data analysis manageable by using dimensionless 
numbers. To formulate this approach, first we will identify and review the required 
dimensionless numbers: Reynolds number, NRe, Nusselt number, NNu, and Prandtl number, NPr. 
Reynolds number has been discussed in the fluid flow module. 
 
The second required dimensionless number for our data analysis is Nusselt number—the 
dimensionless form of convective heat transfer coefficient, h. Consider a fluid layer of thickness 
l, as shown in Figure 6. The temperature difference between the top and bottom of the layer is 
ΔT. If the fluid is stationary, then the rate of heat transfer will be due to conduction, and the rate 
of heat transfer will be 
 

 
 

Figure 6: Heat transfer through a fluid layer 
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However, if the fluid layer is moving, then the heat transfer will be due to convection, and the 
rate of heat transfer using Newton’s law of cooling will be 
 

convectionq hA T      Eq. (28) 

 

.(28)

.(27)
convection

Nu
conduction

qEq hA T hl
N

TEq q kkA
l


   

   Eq. (29) 

 
Replacing thickness l with a more general term for dimension, the characteristic dimension dC, 
we get 
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Nusselt number may be viewed as an enhancement in the rate of heat transfer caused by 
convection over the conduction mode. Therefore, if NNu=1, then there is no improvement in the 
rate of heat transfer due to convection. However, if NNu=5, the rate of convective heat transfer 
due to fluid motion is five times the rate of heat transfer if the fluid in contact with the solid 
surface is stagnant. 



 
The third required dimensionless number for the empirical approach to determine convective 
heat transfer is Prandtl number, NPr, which describes the thickness of the hydrodynamic 
boundary layer compared with the thermal boundary layer. It is the ratio between the molecular 
diffusivity of momentum to the molecular diffusivity of heat. Or, 
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If NPr = 1, then the thickness of the hydrodynamic and thermal boundary layers will be exactly 
the same. On the other hand, if NPr << 1, the molecular diffusivity of heat will be much larger 
than that of momentum. For gases, NPr is about 0.7, and for water it is around 10. 
 
For heating of fluid with electrically heated pipe surface, a graphical relationship may be 
conveniently expressed with an equation as 
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where C, m, and n are coefficients. 
 
2.1 Forced Convection 
 
In forced convection, a fluid is forced to move over a solid surface by external mechanical 
means, such as an electric fan, pump, or a stirrer (Figure 7). The general correlation between the 
dimensionless numbers is 
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Figure 7: 
  
Forced convective heat transfer from a 
pipe with flow inside and outside the 
pipe. 

 
 
2.1.1 Laminar flow in pipes 
 

1. Fully developed conditions with constant surface temperature of the pipe: 
 

3.66NuN               Eq. (35) 

 
where thermal conductivity of the fluid is obtained at average fluid temperature, T , and Cd  is 

the inside diameter of the pipe. 
 

2. Fully developed conditions with uniform surface heat flux: 
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where thermal conductivity of the fluid is obtained at average fluid temperature, T , and Cd  is 

the inside diameter of the pipe. 
 

3. For both entry region and fully developed flow conditions: 
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where L is the length of pipe (m); characteristic dimension, Cd , is the inside diameter of the 

pipe; all physical properties are evaluated at the average fluid temperature, T , except w , 

which is evaluated at the surface temperature of the wall. 
 



 
2.1.2 Transition flow in pipes 
 
For Reynolds numbers between 2100 and 10,000, 
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where all fluid properties are evaluated at the average fluid temperature, T , and Cd  is the inside 

diameter of the pipe, and the friction factor, f, is obtained for smooth pipes using the following 
expression: 
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Turbulent flow in pipes 
 
The following equation may be used for Reynolds numbers greater than 10,000: 
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Fluid properties are evaluated at the average film temperature, T , except w , which is 

evaluated at the wall temperature; dc is the inside diameter of the pipe. Equation (40) is valid 
both for constant surface temperature and uniform heat flux conditions. 
 
 
 
 
 
2.2 Free Convection 
 
Free convection occurs because of density differences in fluids as they come into contact with a 
heated surface (Figure 8). The low density of fluid at a higher temperature causes buoyancy 
forces, and as a result, heated fluid moves upward and colder fluid takes its place. 
 



 
Figure 8: 
 
Heat transfer from the outside of a heated 
pipe due to natural convection. 

 
 
 
Empirical expressions useful in predicting convective heat-transfer coefficients are of the 
following form: 
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where a and m are constants; NRa, is the Rayleigh number. Rayleigh number is a product of two 
dimensionless numbers, Grashof number and Prandtl number. 
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The Grashof number, NGr, is defined as follows: 
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where dC is characteristic dimension (m); ρ is density (kg/m3); g is acceleration due to gravity 
(9.80665 m/s2); β is coefficient of volumetric expansion (K-1); ΔT is temperature difference 
between wall and the surrounding bulk (oC); and μ is viscosity (Pa s). 
 
A Grashof number is a ratio between the buoyancy forces and viscous forces. Similar to the 
Reynolds number, the Grashof number is useful for determining whether a flow over an object is 
laminar or turbulent. For example, a Grashof number greater than 109 for fluid flow over vertical 
plates signifies a turbulent flow. 
 
2.3 Thermal Resistance in Convective Heat Transfer 
A thermal resistance term for convective heat transfer may be defined in a similar manner as in 
conductive heat transfer 
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where the thermal resistance due to convection (Rt)convection is 
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3. Estimation of Overall Heat-Transfer Coefficient 

 
In many heating/cooling applications, conductive and convective heat transfer may occur 
simultaneously. An example shown in Figure 9 involves heat transfer in a pipe that carries a fluid 
at a temperature greater than the temperature of the environment surrounding the outside of the 
pipe. In this case, heat must first transfer from the inside fluid by forced convection to the inside 
surface of the pipe, then by conduction through the pipe wall material, and finally by free 
convection from the outer pipe surface to the surrounding environment. Thus, heat transfer is 
through three layers in a series. 

 
Figure 9: Combined conductive and convective heat transfer. 

 
Using the approach of thermal resistance values, we can write: 
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where Rt is a combination of the thermal resistances in the inside convective layer, the 
conductive layer in the pipe material, and the outside convective layer, or 
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where hi is the inside convective heat transfer coefficient, and Ai is the inside surface area of the 
pipe. 
 
Resistance to heat transfer in the pipe wall is 
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where k is the thermal conductivity of the pipe material (W/[m K]), ri is the inside radius (m), 
and ro is the outside radius (m). Resistance to heat transfer due to convection at the outside pipe 
surface is 
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where ho is the convective heat transfer coefficient at the outside surface of the pipe (W/[m2 K]), 
and Ao is the outside surface area of the pipe. Substituting 
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We can also write an expression for the overall heat transfer for this example as 
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where Ai is the inside area of the pipe, and Ui is the overall heat-transfer coefficient based on the 
inside area of the pipe. From Eq. (53) 
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Eq. (55) is used to calculate the overall heat-transfer coefficient. The selection of area over 
which to calculate the overall heat transfer is quite arbitrary. 
 
 

4. Design of a Tubular Heat Exchanger 
 
One of the key objectives in calculations involving a heat exchanger is to determine the required 
heat transfer area for a given application. We will use the following assumptions: 
 
1. Heat transfer is under steady-state conditions. 
2. The overall heat-transfer coefficient is constant throughout the length of pipe. 
3. There is no axial conduction of heat in the metal pipe. 
4. The heat exchanger is well insulated. The heat exchange is between the two liquid streams 
flowing in the heat exchanger.  
 
There is negligible heat loss to the surroundings. The change in heat energy in a fluid stream, if 
its temperature changes from T1 to T2, is expressed as: 
 

1 2( )pq mc T T    Eq. (56) 

 
where m  is mass flow rate of a fluid (kg/s), cp is specific heat of a fluid (kJ/[kg oC]), and the 
temperature change of a fluid is from some inlet temperature T1 to an exit temperature T2. 

 
Figure 10: A concurrent flow heat exchanger and temperature plots. 

 
Consider a tubular heat exchanger, as shown in Figure 10. A hot fluid, H, enters the heat 
exchanger at location (1) and it flows through the inner pipe, exiting at location (2). Its 
temperature decreases from TH,inlet to TH,exit. The second fluid, C, is a cold fluid that enters the 



annular space between the outer and inner pipes of the tubular heat exchanger at location (1) and 
exits at location (2). Its temperature increases from TC,inlet to TC,exit. The outer pipe of the heat 
exchanger is covered with an insulation to prevent any heat exchange with the surroundings. 
Because the heat transfer occurs only between fluids H and C, the decrease in the heat energy of 
fluid H must equal the increase in the energy of fluid C. Therefore, conducting an energy 
balance, the rate of heat transfer between the fluids is: 
 

, , C, C,( ) ( )H pH H inlet H exit C pC exit inletq m c T T m c T T      Eq. (57) 

 
Eq. (57) is useful if we are interested in determining the inlet and exit temperatures of the two 
fluid streams. But, this equation does not provide us with any information about the size of the 
heat exchanger required for accomplishing a desired rate of heat transfer, and we cannot use it to 
determine how much thermal resistance to heat transfer exists between the two fluid streams. 
 
For those questions, we need to determine heat transfer perpendicular to the flow of the fluid 
streams. 
 
From Figure 10:  
 
Let, the temperature difference, ΔT, between the two fluids H and C is 
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where TH is the temperature of the hot stream and TC is that of the cold stream. 
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H,exit C,exit 2T -T =ΔT   Eq. (60) 
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ΔTlm is called the log mean temperature difference (LMTD). Equation (63) is used to design a 
heat exchanger and determine its area and the overall resistance to heat transfer. 
 
 
 
 



Conclusion  
 
In the present module steady state heat transfer with respect to conduction and convection gas 
been covered. Emphasis has been given to estimation of convection heat transfer coefficient for 
forced and free flow cases. Estimation of overall heat transfer coefficient has been detailed for a 
case involving conduction and convection. Finally equations for design of a tubular heat 
exchanger has been discussed with the introduction of the term log mean temperature difference. 
 


