

[Frequently Asked Questions]

[Solution of Difference Equations]

Subject:	Business Economics
Course:	B.A., 6 th Semester,
	Undergraduate

Paper No. & Title:

Paper – 631 Advanced Mathematical Techniques

Unit No. & Title:

Difference Equations

Lecture No. & Title:

2:

Unit - 4

Solution of Difference Equations

Frequently Asked Questions (FAQ)

1. How to find homogeneous function of the difference equation?

Ans. The homogeneous function can be obtained by setting RHS of difference equation to be zero.

2. What should be the functional form of particular solution if g_x is polynomial?

Ans. Define particular solution as $y_x = A_0 + A_1x + ... A_nx^n$.

3. What is the particular solution of difference equation if homogeneous function consists of g_x ?

Ans. In such a case where the homogeneous solution includes a term similar to the function g_x , the particular solution is $y_x = cxg_x$

4. What is the homogeneous solution of the difference equation if auxiliary equation has equal roots?

Ans. When the auxiliary equation has equal roots $\beta_1 = \beta_2 = \beta$

(say), the homogeneous solution is

 $y_x = c_1 \beta^x + c_2 x \beta^x$

5. What is the homogeneous function of the difference equation if auxiliary equation has complex roots?

Ans. When the roots are conjugate complex numbers:

Let the roots be

$$\beta_1 = a + ib = r(\cos\theta + i\sin\theta)$$
$$\beta_2 = a - ib = r\theta(\cos\theta - i\sin\theta)$$

where $r = \sqrt{a^2 + b^2}$, $\theta = \tan^{-1} \frac{b}{a}$

The solution is

 $y_x = d_1 \beta_1^x + d_2 \beta_2^x$

where d_1 and d_2 are complex conjugates.

Let $d_1 = m + in$, $d_2 = m - in$ $d_1\beta_1^x = d_1r^x(\cos\theta + i\sin\theta)^x = d_1r^x(\cos\theta x + i\sin\theta x)$ $d_2\beta_2^x = d_2r^x(\cos\theta x - i\sin\theta x)$ Thus, $y_x = r^x[(d_1 + d_2)\cos\theta x + i(d_1 - d_2)\sin\theta x] = r^x[c_1\cos\theta x + c_2\sin\theta x]$

where
$$c_1 = d_1 + d_2 = 2m$$

$$c_2 = i(d_1 - d_2) = -2n$$

Thus, c_1 and c_2 are real numbers and we have y_x as a real number.

6. Discuss method to obtain particular solution of second order linear difference equation if g_x is product of exponential and power functions.

Ans. The particular solution is combination of exponential function and polynomial of required degree respectively.