

[Frequently Asked Questions]

[Constrained Optimization]

Subject:

Business Economics

Course:

B. A. (Hons.), 6th Semester, Undergraduate

Paper No. & Title:

Unit No. & Title:

Paper – 631

Advanced Mathematical Techniques

Unit – 2 Function of Two Variables

Lecture No. & Title:

4 (Four) Constrained Optimization

Frequently Asked Questions

- 1. What is non-linear programming problem?
- Ans. A problem is said to be non-linear if either objective function or constraints or both are non-linear.
- 2. Discuss the notion of the point of maxima / minima.
- ▶ Ans. A function f(x) has *maxima* at a point x_0 if for arbitrary small |h|, $f(x_0 + h) f(x_0) < 0$. A function f(x) has *minima* at a point x_0 if for arbitrary small |h|, $f(x_0 + h) f(x_0) > 0$.
- **3.** What do you mean by point of inflexion?
- > Ans. If the Hessian matrix H is indefinite at the point X_0 , then the point X_0 is called point of inflexion.
- **4.** State Lagrangian Multiplier method for one equality constraint.
- Ans. Consider the non-linear programming problem involving nvariables and single constraint as

Optimize $z = f(X), X \in \mathbb{R}^n$ subject to the constraint $g(X) = 0; x \ge 0$ The Lagrangian function is $L(X, \lambda) = f(X) - \lambda g(X)$ The necessary conditions for an extreme point are $\frac{\partial L}{\partial x_j} = \frac{\partial f}{\partial x_j} - \lambda \frac{\partial g}{\partial x_j} = 0; j = 1, 2, ..., n$ $\frac{\partial L}{\partial \lambda} = -g(X) = 0$ Then $\lambda = \frac{\partial f}{\partial x_j} / \frac{\partial g}{\partial x_j}; j = 1, 2, ..., n$. 5. When one needs to use Kuhn-Tucker conditions? > Ans. When constraints are of inequality type in non-linear programming problem, we use Kuhn-Tucker conditions. 6. State Kuhn-Tucker conditions.

> Ans. Kuhn-Tucker conditions for NLPP

Maximize $z = f(X), X \in \square^n$ subject to the constraint $g_i(X) \le b_i; i = 1, 2, ..., m$ $x_j \ge 0; j = 1, 2, ..., n$ The Lagrangian function is

$L(X,\lambda)=f(X)-\lambda g(X)$

The necessary conditions for an extreme point are

(i)
$$\frac{\partial L}{\partial x_j} = \frac{\partial f}{\partial x_j} - \lambda \frac{\partial g}{\partial x_j} = 0; j = 1, 2, ..., n$$

(ii) $\lambda_i (g_i(X) - b_i) = 0$

(iii)
$$g_i(X) \leq b_i$$

(iv)
$$\lambda_i \geq 0; i = 1, 2, ..., m$$

- **7.** What is the nature of the Lagrange's multiplier when the objective function is to be maximized?
- Ans. For maximization problem, the Lagrange's multiplier is nonnegative.
- 8. When constraints are of equality type, what can you say about the signs of Lagrangian's multiplier?
- Ans. When constraints are of equality type, the signs of Lagrangian's multiplier are unrestricted in nature.