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Concept of Convexity/Concavity 

Convex Set: A set X ⊂ ℝn is convex if for every pair of points x1 and x2 ∈ X 

and any λ ∈ [0, 1], the point x = λx1 + (1- λ) x2 also belongs to the set X. 

Equivalently, a set is convex if every point on the line segment between 

every pair of points in the set is also in the set. 

 

Strictly - convex Set: A set X ⊂ ℝn is strictly convex, if for every pair of 

points x1 and x2 ∈ X and any λ ∈ (0, 1), x is an interior point of X where x = 

λx1 + (1- λ)x2. 

In figure, the sets A and B are strictly convex. 

Note: We exclude the cases λ = 0 and λ = 1 because x1 or x2 could be a 

boundary point of a set. 

Convex function: The function f is convex if  

f(x) ≤ λf(x1) + (1- λ)f(x2)  

where x = λx1 + (1- λ)x2 and λ ∈ [0, 1]. 

Note: It is strictly convex if the strict inequality holds when λ ∈ (0, 1). 

Concave function: The function f is concave if  

f(x) ≥ λf(x1) + (1- λ)f(x2)  

where x = λx1 + (1- λ)x2 and λ ∈ [0, 1]. 

Note: It is strictly concave if the strict inequality holds when λ ∈ (0, 1). 
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Let us illustrate this concept for the function f(x) = x2. 

Let λ = 0.4, x1 = 2 and x2 = 7. 

We have x = λx1 + (1- λ)x2 = (0.4)2 + (0.6)7 = 5 

So, f(x) = f(5) = 25 

which is the height of the function at the point x in fig. 

 

Now, from convex combination, we get a straight line connecting f(2) and 

f(7) as  

0.4 (2)2 + 0.6 (7)2 = 31 

which is the height of a straight line connecting the points (2, 4) and (7, 49) 

at x = 5. Hence, f(x) = x2 is strictly convex between these two points. 

Note: One can prove that in general, f(x) = x2 is strictly convex. 

 

Level Set: A level set of the function y = f(x1, x2, …, xn) is the set  

L = {(x1, x2, …, xn) ∈ ℝn : f(x1, x2, …, xn) = c} 

for some real number c. 

The level set shows the set of points in the domain of the function that 

gives equal values of the function. 

In economics, level sets are used in Consumer theory (where they are 

called indifference curves), Producer theory (where they are called 

isoquants) etc. 
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 Quasiconcavity is concerned with the shape of the level sets of the 

function. 

Better Set: The better set of a point (x10, x20, …, xn0) is 

B(x10, x20, …, xn0) = {(x10, x20, …, xn0) : f(x1, x2, …, xn) ≥ f(x10, x20, …, xn0)}. 

Note: The better set of a point is the set of the points in the domain that 

yields at least as large a function value. 

Quasiconcave function: A function f with domain X ⊂ ℝn is quasiconcave, if 

every point in X, the better set B of that point is a convex set. It is strictly 

quasiconcave if B is strictly convex.  

 The shapes of the level sets of quasiconcave function will depend on 

the direction in which the function increases.  

 If the function is increasing, then the level sets must have negative 

slope and the convexity of the better sets will depict the shape. 

Note: If the function is increasing in one variable and decreasing in the other 

or decreasing in both the variables, the quasiconcavity will generate 

different shapes for the level sets. 

Worse set: The worse set of a point (x10, x20, …, xn0) is 

W(x10, x20, …, xn0) = {(x10, x20, …, xn0) : f(x1, x2, …, xn) ≤ f(x10, x20, …, xn0)}. 

Quasiconvex function: A function f(x1, x2, …, xn) with domain X ⊂ ℝn is 

quasiconvex if every (x10, x20, …, xn0) ∈ X, the worse W(x10, x20, …, xn0) is a 

convex set. It is strictly Quasiconvex if W(x10, x20, …, xn0) is strictly convex. 

Note: Any convex function is quasiconvex but not vice versa. 

 Curvature of a function is described by the second-order derivatives. 

We have studied that for f ’’ > 0 the function is convex, which means 

that for f ‘ > 0, the function increases more rapidly as x increases while for f ‘ 

< 0, the function value falls less quickly. 

For f ’’ < 0 the function is concave, which means that for f ‘ > 0, the 

function increases less quickly as x increases while for f ‘ < 0, the function 

value falls more quickly. 

The second-order differential for the function z = f(x,y) is 

d2z = fxxdx2 + 2fxydxdy + fyydy2 



This suggests that d2z depends on the cross-partial second derivative fxy as 

well as on fxx and fyy. 

 

We have following sufficient conditions for a function to be strictly 

convex or strictly concave. 

Theorem: If the function z = f(x,y) defined on ℝ2 is twice continuously 

differentiable and d2z = fxxdx2 + 2fxydxdy + fyydy2 > 0 whenever at least one 

of the dx or dy is non-zero, then z = f(x,y) is a strictly convex function. 

Theorem: If the function z = f(x,y) defined on ℝ2 is twice continuously 

differentiable and d2z = fxxdx2 + 2fxydxdy + fyydy2 < 0 whenever at least one 

of the dx or dy is non-zero, then z = f(x,y) is a strictly concave function. 

Example: Show that the function z = x2 + y2 is strictly convex. 

Clearly, fxx = 2, fxy = 0, fyy = 2. Then 

d2z = fxxdx2 + 2fxydxdy + fyydy2 = 2dx2 + 2dy2 

Since, dx2 ≥ 0, dy2 ≥ 0 and both are zero only if dx = dy = 0, then the 

function is strictly convex. 

 

Example: For z = x4 + y4 

fxx = 12x2,  fyy = 12y2, fxy = 0 

and so d2z = fxxdx2 + 2fxydxdy + fyydy2 = 12x2dx2 + 12y2dy2 

which takes the value zero when x = y = 0, then the function is strictly 

convex. 



 

Theorem: If the function z = f(x,y) defined on ℝ2 is twice continuously 

differentiable then it is convex if and only if   

d2z = fxxdx2 + 2fxydxdy + fyydy2 ≥ 0. 

Theorem: If the function z = f(x,y) defined on ℝ2 is twice continuously 

differentiable then it is concave if and only if   

d2z = fxxdx2 + 2fxydxdy + fyydy2 ≤ 0. 

Note: For weak convexity or weak concavity, the condition holds with weak 

inequality. 

Example: The function z = 5 – (x + y)2 is concave. 

We have fx = - 2 (x + y), fy = - 2 (x + y) 

               fxx = - 2, fyy = - 2, fxy = - 2.  

Then d2z = fxxdx2 + 2fxydxdy + fyydy2 = - 2 (dx + dy)2 ≤ 0.  

So the function is concave as shown in figure. 

 

Theorem: For any function y = f(x), x ∈ ℝn which is twice continuously 

differentiable with Hessian matrix H, it follows that 

(1) the function f is strictly convex on ℝn if H is positive definite for all      x 

∈ ℝn, i.e. d2y = dxTHx > 0. 

(2) the function f is strictly concave on ℝn if H is negative definite for all      

x ∈ ℝn, i.e. d2y = dxTHx < 0. 



(3) the function f is convex on ℝn if H is positive semi-definite for all         

x ∈ ℝn, i.e. d2y = dxTHx ≥ 0. 

(4) the function f is concave on ℝn if H is negative semi-definite for all      

x ∈ ℝn, i.e. d2y = dxTHx ≤ 0. 

Note: The conditions on H are only sufficient in the case of strict convexity / 

concavity, while the conditions are both necessary and sufficient in case of 

(weak) convexity / concavity. 

Theorem: Let H be the Hessian matrix associated with a twice continuously 

differentiable function y = f(x), x ∈ ℝn. Then 

(1) H is a positive definite on ℝn if and only if its leading principal minors 

are positive; |H1| > 0, |H2| > 0,…, |Hn| = |H| > 0 for x ∈ ℝn. In this case 

d2y > 0 and so f is strictly convex. 

(2) H is a negative definite on ℝn if and only if its leading principal minors 

alternate in signs beginning with a negative value. i.e. |H1| < 0, |H2| > 

0,…, |Hn| = |H| > 0, if n is even and < 0 if n is odd for x ∈ ℝn. In this 

case d2y < 0 and so f is strictly concave. 

(3) H is a positive semi-definite on ℝn if and only if its leading principal 

minors are positive or zero; |H1| ≥ 0, |H2| ≥ 0,…, |Hn| = |H| ≥ 0 for x ∈ 

ℝn. In this case d2y ≥ 0 and so f is convex. 

(4) H is a negative semi-definite on ℝn if and only if its leading principal 

minors alternate in signs beginning with a negative or zero. In this 

case d2y ≤ 0 and so f is concave. 

Example: Consider z = (x + y)1/2. 

The second-order partial derivatives are 

fxx = , fxy = fyx = , fyy =  

Then |H1| = fxx < 0, |H2| =  = 0. 

Since, |H2| = 0, we check for weak concavity. |H1| = fxx, fyy are both negative 

and |H2| ≥ 0. Therefore, f is concave. 

 



Bordered Hessian matrix: Let f be defined on ℝn possess continuous first 

– and second – order partial derivatives. The bordered Hessian of the 

function f is 

Hb = 

0 fx1 ... fxn

fx1 fx1x1 f x1xn

fxn fxnn1 fxnxn
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Note that the bordered Hessian matrix is formed by taking the Hessian 

matrix and adding [0   fx1   fx2 … fxn] as a first column and a first row. Then 

|Hb1| =  

|Hb2| = , and so on. 

Note: |Hb1| = - f1
2 and so must be non-positive. 

Theorem: Suppose that f is a function defined on ℝn possess continuous 

first – and second – order partial derivatives. Let Hb represents the bordered 

Hessian of f. Then 

(1) If |Hb2| > 0, |Hb3| < 0, … |Hbn| > 0 (if n even) and < 0 (if n odd) for all    x 

∈ ℝn, then f is quasiconcave. 

(2) If |Hb2| < 0, |Hb3| < 0, … |Hbn| < 0 for all x ∈ ℝn, then f is quasiconvex. 

Note: Any convex function is quasiconvex but vice versa may not hold. 

Example: Show that the function f(x,y) = xy2 defined on ℝ2 is quasiconcave. 

|Hb2| =  = 6xy4 > 0 for x, y > 0 

Therefore f is quasiconcave. 

Summary 

 The shapes of the level sets of quasiconcave function will depend on 

the direction in which the function increases.  

 If the function is increasing in one variable and decreasing in the other 

or decreasing in both the variables, the quasiconcavity will generate 

different shapes for the level sets. 



 Any convex function is quasiconvex but not vice versa. 

 Curvature of a function is described by the second-order derivatives. 

 For f ’’ > 0 the function is convex, which means that for f ‘ > 0, the 

function increases more rapidly as x increases while for f ‘ < 0, the 

function value falls less quickly. 

 For f ’’ < 0 the function is concave, which means that for f ‘ > 0, the 

function increases less quickly as x increases while for f ‘ < 0, the 

function value falls more quickly. 

 If the function z = f(x,y) defined on ℝ2 is twice continuously 

differentiable and d2z = fxxdx2 + 2fxydxdy + fyydy2 > 0 whenever at least 

one of the dx or dy is non-zero, then z = f(x,y) is a strictly convex 

function. 

 If the function z = f(x,y) defined on ℝ2 is twice continuously 

differentiable and d2z = fxxdx2 + 2fxydxdy + fyydy2 < 0 whenever at least 

one of the dx or dy is non-zero, then z = f(x,y) is a strictly concave 

function. 

 The conditions on Hessian are only sufficient in the case of strict 

convexity / concavity, while the conditions are both necessary and 

sufficient in case of (weak) convexity / concavity. 

 The bordered Hessian matrix is formed by taking the Hessian matrix 

and adding [0   fx1   fx2 … fxn] as a first column and a first row. 

 

 


