

[Glossary]

[Conce	pt of	Convexity	/Conc	avitv 1
Leonee		CONTERNE		

Subject:Business EconomicsCourse:B. A. (Hons.), 6th
Semester, UndergraduatePaper No. & Title:Paper - 631
Advanced Mathematical
TechniquesUnit No. & Title:Unit - 2
Function of Two VariablesLecture No. & Title:Lecture - 3

Lecture – 3 Concept of Convexity/ Concavity

Glossary

- A set X ⊂ ℝⁿ is *convex* if for every pair of points x₁ and x₂ ∈ X and any λ ∈ [0, 1], the point x = λx_1 + (1- λ)x₂ also belongs to the set X.
- A set X ⊂ ℝⁿ is *strictly convex*, if for every pair of points x₁ and x₂ ∈ X and any $\lambda \in (0, 1)$, x is an interior point of X where x = $\lambda x_1 + (1 \lambda)x_2$.
- The function f is *convex* if f(x) ≤ λf(x₁) + (1-λ) f(x₂) where x = λx₁ + (1-λ) x₂ and λ ∈ [0, 1].

The function f is *concave* if f(x) ≥ λ f(x₁) + (1- λ) f(x₂) where x = λ x₁ + (1- λ) x₂ and $\lambda \in [0, 1]$.

> A *level set* of the function $y = f(x_1, x_2, ..., x_n)$ is the set

$$L = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : f(x_1, x_2, ..., x_n) = c\}$$

for some real number c.

> The **better set** of a point $(x_{10}, x_{20}, ..., x_{n0})$ is

 $\mathsf{B}(x_{10},\,x_{20},\,\ldots,\,x_{n0})=\{(x_{10},\,x_{20},\,\ldots,\,x_{n0}):\,f(x_1,\,x_2,\,\ldots,\,x_n)\geq f(x_{10},\,x_{20},\,\ldots,\,x_{n0})\}.$

- A function f with domain X ⊂ ℝⁿ is *quasiconcave function*, if every point in X, the better set B of that point is a convex set.
- > The **worse set** of a point $(x_{10}, x_{20}, ..., x_{n0})$ is

 $W(x_{10}, x_{20}, \ldots, x_{n0}) = \{(x_{10}, x_{20}, \ldots, x_{n0}) : f(x_1, x_2, \ldots, x_n) \le f(x_{10}, x_{20}, \ldots, x_{n0})\}.$

- > A function $f(x_1, x_2, ..., x_n)$ with domain X ⊂ \mathbb{R}^n is *quasiconvex* if every $(x_{10}, x_{20}, ..., x_{n0}) \in X$, the worse W($x_{10}, x_{20}, ..., x_{n0}$) is a convex set.
- ➤ If the function z = f(x,y) defined on \mathbb{R}^2 is twice continuously differentiable and $d^2z = f_{xx}dx^2 + 2f_{xy}dxdy + f_{yy}dy^2 > 0$ whenever at least one of the dx or dy is non-zero, then z = f(x,y) is a strictly convex function.
- ➢ If the function z = f(x,y) defined on ℝ² is twice continuously differentiable and d²z = f_{xx}dx² + 2f_{xy}dxdy + f_{yy}dy² < 0 whenever at least one of the dx or dy is non-zero, then z = f(x,y) is a strictly concave function.
- > If the function z = f(x,y) defined on \mathbb{R}^2 is twice continuously differentiable then it is convex if and only if

 $d^2z = f_{xx}dx^2 + 2f_{xy}dxdy + f_{yy}dy^2 \ge 0.$

> If the function z = f(x,y) defined on \mathbb{R}^2 is twice continuously differentiable then it is concave if and only if

 $d^2z = f_{xx}dx^2 + 2f_{xy}dxdy + f_{yy}dy^2 \le 0.$