

[Glossary]

Introduction	to	Partial	Differentiation

Subject:	Business Economics
Course:	B. A. (Hons.), 6 th Semester, Undergraduate
Paper No. & Title:	Paper – 631
	Advanced Mathematical Techniques
Unit No. & Title:	Unit – 2 Function of Two Variables
	La chuna 1

Lecture No. & Title:

Lecture - 1

Introduction to Partial Differentiation

Glossary

- A function of several variables consists of two parts: a domain, which is a collection of points in the plane or in the space, and a rule, which assigns to each member of the domain one and only one point.
- A function of several variables is called a *function of two* variables if its domain is a set of points in the plane.
- A function of several variables is called a *function of three* variables if its domain is a set of points in the space.
- Let u = f(x,y). The derivative of u with respect to x if it exists when x alone varies and y remains constant is called **partial derivative** of u with respect to x. and it is denoted by u_x.
- Young's Theorem: For a function u = f(x₁, x₂, ..., x_n) with continuous first and second order partial derivatives, the order of differentiation in computing the cross-partials is irrelevant. i.e. f_{ij} = f_{ji} for i, j = 1, 2,...n and i ≠ j.