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Eigenvalues and Quadratic Forms 

Introduction: In this module we learn some very important and 

useful concepts of matrix algebra like eigenvalues, eigenvectors 

and quadratic forms. These concepts play a vital role in the 

theory of economics. The use of eigenvalues and eigenvectors is 

eminent in the study of various statistical and economic models 

especially those dealing with solving system of linear differential 

equations. The problems of finding maxima or minima of 

functions of two or more variables occur frequently in economics. 

In such problems we need to deal with finding the signs of the 

quadratic forms which arise through the second-order conditions 

for maximality or minimality of functions at a point. In this sense 

study of quadratic forms is quite important for economists. 

With this little motivation we now introduce eigenvalues through 

the eigenvalue problem. 

The Eigenvalue Problem 

Given a square matrix 𝑨 of order 𝒏, the eigenvalue problem 

is to determine a non-zero (column) vector 𝒙 = [

𝒙𝟏

𝒙𝟐

⋮
𝒙𝒏

] in ℝ𝒏 

and a real scalar 𝝀 satisfying 

𝑨𝒙 = 𝝀𝒙. 

We may interpret the eigenvalue problem as a problem of solving 

the system of 𝑛 linear equations in two unknowns; a vector   𝑥 

and a scalar 𝜆. Such situations occur frequently in economics and 

econometrics. This leads us to the definition of eigenvalues and 

eigenvectors. 

Definition: Eigenvalues and Eigenvector                 
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ℝ 

 

Let 𝐀 be a square matrix of order 𝐧. A real number 𝛌            

is called an eigenvalue of the matrix 𝐀 if there exists a 

non-zero (column) vector 𝐱 = [

𝐱𝟏

⋮
𝐱𝐧

] in ℝ𝐧 satisfying            

𝐀𝐱 = 𝛌𝐱.   The vector 𝐱 is called an eigenvector of the matrix 

𝐀 associated to the eigenvalue 𝛌 . 

Later we shall see through an example that more than one 

eigenvectors can associate with the same eigenvalue  𝜆 . 

Eigenvalues and Eigenvectors are also known as characteristic 

roots and characteristic vectors of a matrix respectively.  

Let us now discuss the method of determining the eigenvalues 

and eigenvectors.  

Note that the equation 𝑨𝒙 = 𝝀𝒙 is same as (𝑨 − 𝝀𝑰)𝒙 = 𝟎     

where 𝑰 denotes the identity matrix of order 𝒏.                 

But we know that the system of equations (𝑨 − 𝝀𝑰)𝒙 = 𝟎      

has a non-zero solution if and only if the determinant        

of the matrix 𝑨 − 𝝀𝑰 is zero. Thus if we denote                    

the determinant of 𝑨 − 𝝀𝑰 by |𝑨 − 𝝀𝑰 | then the eigenvalues     

of the matrix are simply the roots of the equation 
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|𝑨 − 𝝀𝑰 | = 𝟎 

This equation is known as the characteristic equation        

of the matrix 𝑨 whereas |𝑨 − 𝝀𝑰|, which is a polynomial in     

𝝀 of degree 𝒏, is known as the characteristic polynomial     

of the matrix 𝑨.  

Here it is worth mentioning that every matrix satisfies its 

characteristic equation.  

In other words,  

If 𝒇(𝝀) = |𝑨 − 𝝀𝑰| denotes the characteristic polynomial of    

the matrix 𝑨, then 𝒇(𝑨) = 𝟎. This result is known as      

Cayley-Hamilton theorem and it is often useful                   

in computing the higher powers of matrix 𝑨 or its inverse if 

it exists. 

Now since |𝑨 − 𝝀𝑰| is a polynomial in 𝝀 of degree 𝒏              

the characteristic equation of a matrix 𝑨 of order 𝒏 has        

at the most 𝒏 real roots in general.  

Note that it is very much possible that a polynomial of an even 

degree has no real roots and so a square matrix of an even order 

may not have any real eigenvalues. However if the matrix is 

symmetric then it can be proved that its characteristic equation 

has exactly 𝑛 real roots, which may not be necessarily distinct. 

Thus we can say that if 𝐴 is a square matrix of order 𝑛 then it has 
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at the most 𝑛 eigenvalues and further if 𝐴 is symmetric then it has 

exactly 𝑛 eigenvalues which are usually denoted by 𝝀𝟏,𝝀𝟐, … , 𝝀𝒏 but 

not necessarily distinct.  

Let us now consider some examples about computing the 

eigenvalues and eigenvectors. 

Example 1:  

Determine the eigenvalues and eigenvectors of the      

matrix A of order 2 whose rows are [
𝟗 𝟐
𝟐 𝟔

] 

Solution: Here the characteristic equation of the matrix 𝑨 

is                     

|𝑨 − 𝝀𝑰| = 𝟎 

which on expansion of the determinant is same                   

as 𝝀𝟐 − 𝟏𝟓𝝀 + 𝟓𝟎 = 𝟎. But 𝝀𝟐 − 𝟏𝟓𝝀 + 𝟓𝟎 = (𝝀 − 𝟓)(𝝀 − 𝟏𝟎)               

and hence the eigenvalues of 𝑨 are 𝝀𝟏 = 𝟓 and 𝝀𝟐 = 𝟏𝟎.  

In order to determine an eigenvector associated                

to the eigenvalue 𝝀𝟏 = 𝟓 we have to solve the matrix 

equation (𝑨 − 𝟓𝑰)𝒙 = 𝟎 which is same as solving the pair of 

equations 𝟒𝒙𝟏 + 𝟐𝒙𝟐 = 𝟎 and 𝟐𝒙𝟏 + 𝒙𝟐 = 𝟎. Since these two 

equations are identical  any non-zero vector (𝒙𝟏, 𝒙𝟐) in 

which 𝒙𝟐 = −𝟐𝒙𝟏 is an eigenvector of 𝑨 associated with the 

eigenvalue 𝟓.  
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Similarly for finding an eigenvector associated to  the eigenvalue 𝜆2 = 10 we 

have to solve the matrix equation (𝐴 − 10𝐼)𝑥 = 0 

 which is same as solving the pair of equations     −𝑥1 + 2𝑥2 = 0 and 2𝑥1 −

4𝑥2 = 0. Thus any non-zero  vector (𝑥1, 𝑥2) in which 𝑥1 = 2𝑥2 is an eigenvector    

of 𝐴 associated with the eigenvalue 10.  

We saw that there are infinitely many eigenvectors associated with the 

eigenvalues 5 and 10 of matrix 𝐴. However, if we insist on eigenvectors of 

unit length then they are (
1

√5
,

−2

√5
) and (

−1

√5
,

2

√5
) associated to the eigenvalue 5 

and those associated to the eigenvalue 10 are (
2

√5
,

1

√5
) and (

−2

√5
,

−1

√5
). Now we 

consider an example of a matrix of order 3. 

Example 2:  

Determine the eigenvalues and eigenvectors of the       

matrix A of order 3 whose rows are [
𝟏 𝟎 𝟎
𝟎 𝟐 𝟎
𝟎 𝟎 𝟏

]. 

Solution:  

It is easily observed that the characteristic equation           

of the matrix 𝑨 here is  

(𝟏 − 𝝀)(𝟐 − 𝝀)(𝟏 − 𝝀) = 𝟎 

and hence the eigenvalues of 𝑨 are 𝟏, 𝟐 and 𝟏.  

Note that although we have a matrix of order 𝟑 we         

have only two distinct eigenvalues. For eigenvectors 

corresponding to the eigenvalue 𝟏, we solve the           

matrix equation (𝑨 − 𝑰)𝒙 = 𝟎 and this gives 𝒙𝟐 = 𝟎.  
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Thus any non-zero vector (𝒙𝟏, 𝒙𝟐,𝒙𝟑) in which 𝒙𝟐 = 𝟎,                 

is an eigenvector of 𝑨 associated with the eigenvalue 𝟏.        

On the other hand it may be verified that the      

eigenvectors corresponding to the eigenvalue 𝟐 are         

non-zero vectors (𝒙𝟏, 𝒙𝟐,𝒙𝟑) in which 𝒙 𝟏 = 𝒙𝟑 = 𝟎. 

It is clear from Example 2 that the eigenvalues of a diagonal 

matrix are simply its diagonal elements. We now record few more 

interesting results regarding the eigenvalues and eigenvectors. 

Theorem:  

If 𝝀 is an eigenvalue of a square matrix 𝑨 then it is           

also an eigenvalue of its transpose matrix 𝑨𝑻. 

Theorem:  

If 𝝀 is an eigenvalue of an invertible (non-singular) matrix 

𝑨 then 𝝀−𝟏 is an eigenvalue of its inverse matrix 𝑨−𝟏.  

Theorem:  

If 𝝀 is an eigenvalue of a square matrix 𝑨 then 𝝀𝒌 is an 

eigenvalue of the matrix 𝑨𝒌 for every positive integer 𝒌. 

 

 

 

Theorem:  
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Let 𝑨 be a square matrix of order 𝒏. Then the 

eigenvectors corresponding to the distinct eigenvalues       

of 𝑨 are linearly independent vectors. 

In addition to these results, if 𝑨 is symmetric then            

we have some additional information regarding its 

eigenvalues and eigenvectors. 

Theorem:  

Let 𝑨 be a symmetric matrix of order 𝒏.  Then  real 

eigenvalues of 𝑨 exist and further if 𝝀𝟏,𝝀𝟐, … , 𝝀𝒓 are its 

distinct real eigenvalues which are repeated 𝒌𝟏,𝒌𝟐, … , 𝒌𝒓 

times respectively then  

𝒌𝟏+𝒌𝟐 + … + 𝒌𝒓 = 𝒏. 

Theorem:  

Let 𝑨 be a symmetric matrix of order 𝒏. If 𝒒𝟏 and 𝒒𝟐            

are the eigenvectors corresponding to the distinct 

eigenvalues 𝝀𝟏 and 𝝀𝟐 of 𝑨 then 𝒒𝟏 and 𝒒𝟐 are orthogonal 

vectors. 

 

 

 

Theorem:  
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Let 𝑨 be a symmetric matrix of order 𝒏 and suppose 

𝝀𝟏,𝝀𝟐, … , 𝝀𝒓 are its distinct real eigenvalues which are 

repeated 𝒌𝟏,𝒌𝟐, … , 𝒌𝒓 times respectively. Then for each   𝟏 ≤

𝒋 ≤ 𝒓, there exist 𝒌𝒋 mutually orthonormal        eigenvectors 

associated with the eigenvalue 𝝀𝒋.         Further, the matrix 

𝑷 formed by these 𝒏 mutually orthonormal eigenvectors is 

orthogonal and                𝑷−𝟏𝑨𝑷=𝚲 is a diagonal matrix 

whose diagonal           elements are simply the eigenvalues 

of 𝑨. 

In the above theorem since 𝑃−1𝐴𝑃 produces a diagonal matrix we 

often say that 𝑃 diagonalizes the symmetric matrix 𝐴. As diagonal 

matrices are easy to deal with in many scenarios, the last 

theorem leads us to the topic of matrix diagonalization. 

 

The Diagonalization of a Square Matrix 

Definition: Similar Matrices 

Let 𝐴 and 𝐵 be square matrices of the same order. If there exists 

an invertible matrix 𝑃 such that 𝑃−1𝐴𝑃 = 𝐵 then we say that 𝐴 is 

similar to 𝐵. 

Note that if 𝑃−1𝐴𝑃 = 𝐵,  then by taking 𝑄 = 𝑃−1,  we have 𝑄−1𝐵𝑄 =

𝐴. Thus 𝐴 is similar to 𝐵 if and only 𝐵 is similar to 𝐴 and so we also 

use the terminology 𝐴 and 𝐵 are similar matrices instead of 𝐴 is 

similar to 𝐵 or 𝐵 is similar to 𝐴. Similar matrices share many 

properties and perhaps that is the reason they are called similar. 

It is not difficult to prove that similar matrices have same 
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determinant, trace, eigenvalues and rank. Also since matrix 

multiplication is associative, for every positive integer 𝑛  

𝐵𝑛 = 𝑃−1𝐴𝑛𝑃   and 𝐴𝑛 = 𝑃𝐵𝑛𝑃−1. 

Now for a diagonal matrix, since the computation of its 

determinant, rank, powers and other such things, is a very simple 

task; we are often interested in knowing whether the given 

matrix is similar to a diagonal matrix or not. This leads us to the 

definition of diagonalizable matrix. 

Definition: Diagonalizable Matrix 

Let 𝐴 be a square matrix. Then it is called a diagonalizable matrix 

if it is similar to a diagonal matrix or in other words if we can find 

an invertible matrix 𝑃 such that 𝑃−1𝐴𝑃 is a diagonal matrix. The 

process of finding such 𝑃 for the matrix 𝐴 is called matrix 

diagonalization. 

The above definition raises an immediate question. Is every 

square matrix diagonalizable?  

The answer to this question is given by the following technical 

theorem. 

Theorem: Let 𝐴 be a square matrix of order 𝑛. Then 𝐴 is 

diagonalizable if and only if it has 𝑛 linearly independent 

eigenvectors. 

Since we have seen in one of our earlier theorems that the 

eigenvectors corresponding to distinct eigenvalues are linearly 

independent we have the following nice result. 

Theorem: Let 𝐴 be a square matrix of order 𝑛. Then 𝐴 is 

diagonalizable if it has 𝑛 distinct real eigenvalues. 

In view of the last theorem about symmetric matrix above, we 

can say that every symmetric matrix is similar to a diagonal 



11 
 

matrix whose diagonal elements are its eigenvalues. Since the 

trace and determinant of a diagonal matrix are respectively the 

sum and product of its diagonal elements, it follows that the trace 

and determinant of every symmetric matrix is respectively the 

sum and product of its eigenvalues. 

We now consider an example to understand the matrix 

diagonalization process. 

Example 3: Diagonalize the matrix 𝐴 = [
3 −1 1

−1 5 −1
1 −1 3

]. 

Solution: The characteristic equation of the matrix 𝐴 is 

|
3 − 𝜆 −1 1

−1 5 − 𝜆 −1
1 −1 3 − 𝜆

| = 0. 

Expanding the determinant and simplifying it gives 

𝜆3 − 11𝜆2 + 36𝜆 − 36 = 0 

whose roots are 6,3 and 2 and these are the eigenvalues of 𝐴. In 

order to diagonalize the matrix 𝐴, we have to determine the 

orthogonal matrix 𝑃 whose 3 columns are the orthonormal 

eigenvectors corresponding to the eigenvalues 6,3 and 2. For the 

eigenvector corresponding to the eigenvalue 6, we solve 

(𝐴 − 6𝐼)𝑥 = [
−3 −1 1
−1 −1 −1
1 −1 −3

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0

]. 

It may be verified that one of the solution of this system of 

equations is  𝑥1 = 1, 𝑥2 = −2  and 𝑥3 = 1. Thus   𝑣1 = (1, −2,1) is one 

of the eigenvector of 𝐴 associated to the eigenvalue 6. Similarly it 

may be verified that 𝑣2 = (1,1,1) and 𝑣3 = (1,0, −1) are the 

eigenvectors of 𝐴 associated to the eigenvalues 3 and 2 



12 
 

respectively. Therefore the orthogonal matrix 𝑃 which 

diagonalizes 𝐴 is given by 

𝑃 = [

1/√6 1/√3 1/√2

−2/√6 1/√3 0

1/√6 1/√3 −1/√2

] . 

It may now be verified that 

𝑃−1𝐴𝑃 = 𝑃𝑇𝐴𝑃

= [

1/√6 −2/√6 1/√6

1/√3 1/√3 1/√3

1/√2 0 −1/√2

] [
3 −1 1

−1 5 −1
1 −1 3

] [

1/√6 1/√3 1/√2

−2/√6 1/√3 0

1/√6 1/√3 −1/√2

]

= [
6 0 0
0 3 0
0 0 2

]. 

Let us now discuss the role of eigenvalues in the study of 

quadratic forms. 

Quadratic Forms 

Definition: Quadratic Forms 

Consider a square matrix 𝐴 = [𝑎𝑖𝑗] of order 𝑛 and a column vector 

𝑥 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] in ℝ𝑛. Then the quadratic form associated with the matrix 

𝐴 = [𝑎𝑖𝑗] is an expression of the form 

𝑞(𝑥) = 𝑥𝑇𝐴𝑥 = ∑ ∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 𝑥𝑖𝑥𝑗. 

 

Remark: If 𝐴 is not symmetric then by defining 

𝑎𝑖𝑗
∗ =

𝑎𝑖𝑗 + 𝑎𝑗𝑖

2
= 𝑎𝑗𝑖

∗  
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we see that the quadratic form 𝑞∗(𝑥) associated with the 

symmetric matrix 𝐴∗ = [𝑎𝑖𝑗
∗ ] is same as the quadratic form 𝑞(𝑥) 

associated with the non-symmetric matrix 𝐴. This is the reason 

we may confine our attention to the study of quadratic forms 

associated with the symmetric matrix only. 

Example 4: Determine the quadratic form associated with the 

symmetric matrix 𝐴 = [
3 −1 2

−1 1 4
2 4 5

]. 

Solution: Here 

𝑞(𝑥) = [𝑥1 𝑥2 𝑥3] [
3 −1 2

−1 1 4
2 4 5

] [

𝑥1

𝑥2

𝑥3

] 

= 3𝑥1
2 + 𝑥2

2 + 5𝑥3
2 − 2𝑥1𝑥2 + 4𝑥1𝑥3 + 8𝑥2𝑥3. 

 

We now introduce the terminology related to the sign of quadratic 

forms. 

 If 𝑞(𝑥) = 𝑥𝑇𝐴𝑥 > 0 for all 𝑥 ≠ 0, then we say that the quadratic 

form 𝑞(𝑥) is positive definite and the matrix 𝐴 is said to be a 

positive definite matrix. 

 If 𝑞(𝑥) = 𝑥𝑇𝐴𝑥 ≥ 0 for all 𝑥, then we say that the quadratic 

form 𝑞(𝑥) is positive semidefinite and the matrix 𝐴 is said to 

be a positive semidefinite matrix. 

 If 𝑞(𝑥) = 𝑥𝑇𝐴𝑥 < 0 for all 𝑥 ≠ 0, then we say that the quadratic 

form 𝑞(𝑥) is negative definite and the matrix 𝐴 is said to be a 

negative definite matrix. 

 If 𝑞(𝑥) = 𝑥𝑇𝐴𝑥 ≤ 0 for all 𝑥, then we say that the quadratic 

form 𝑞(𝑥) is negative semidefinite and the matrix 𝐴 is said to 

be a negative semidefinite matrix. 
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If a quadratic form takes positive as well as negative values then 

it is said to be indefinite. The following theorem gives a necessary 

and sufficient condition for determining the definiteness of a 

given quadratic form. 

Theorem: Let 𝑞(𝑥) be a quadratic form associated with a 

symmetric matrix 𝐴. Then 

1. 𝑞(𝑥) is positive definite if and only all the eigenvalues of 𝐴 

are positive. 

2. 𝑞(𝑥) is positive semidefinite if and only all the eigenvalues of 

𝐴 are non-negative. 

3. 𝑞(𝑥) is negative definite if and only all the eigenvalues of 𝐴 

are negative. 

4. 𝑞(𝑥) is negative semidefinite if and only all the eigenvalues 

of 𝐴 are non-positive. 

5. 𝑞(𝑥) is indefinite if some of the eigenvalues of 𝐴 are positive 

and some of them are negative. 

We now see one application of quadratic forms. 

Theorem: For a real-valued function 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛),  if a point 

𝑥∗ = (𝑥1
∗ , 𝑥2

∗ , … , 𝑥𝑛
∗ ) is a point of local minimum or local maximum 

then  ∇𝑓(𝑥∗) = 0.  Further, if  𝐻 = [𝑓𝑖𝑗(𝑥∗)] is the Hessian matrix 

evaluated at the point 𝑥∗ ,  then the point  𝑥∗ is the point of local 

minimum or maximum accordingly as  the quadratic form 

𝑑 2𝑦 = 𝑑𝑥𝑇𝐻𝑑𝑥 

is positive or negative definite. On the other hand if the quadratic 

form 𝑑𝑥𝑇𝐻𝑑𝑥 is indefinite then 𝑥∗ is neither the point of local 

minimum nor the point of local maximum. 

Finally let us consider one example to understand this. 
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Example 5: Determine the points of local extremum for the 

function 𝑦 = 𝑓(𝑥1, 𝑥2) =
𝑥1

3

3
+ 3𝑥1

2 + 𝑥1 𝑥2 +
𝑥2

2

2
+ 6𝑥2. 

Solution: Here 𝑓1 =
𝜕𝑦

𝜕𝑥1
= 𝑥1

2 + 6𝑥1 + 𝑥2 and 𝑓2 =
𝜕𝑦

𝜕𝑥2
= 𝑥1 + 𝑥2 + 6 and 

so ∇𝑓(𝑥1, 𝑥2) = (0,0) gives 

𝑥1
2 + 6𝑥1 + 𝑥2 = 0 and 𝑥1 + 𝑥2 + 6 = 0 

whose solutions are (1, −7) and (−6,0). Now the Hessian matrix 

𝐻 =  [
𝑓11 𝑓12

𝑓21 𝑓22
] = [

2𝑥1 + 6 1
1 1

] 

and so 𝐻 at the point (1, −7) is the matrix [
8 1
1 1

]. The eigenvalues 

of this matrix are roots of  the equation 

|
8 − 𝜆 1

1 1 − 𝜆
| = 0. 

But this is same as solving the quadratic equation 𝜆2 − 9𝜆 + 7 = 0 

whose roots are  
9+√53

2
 and  

9−√53

2
 . Since both these roots are 

positive we conclude that 𝐻 is positive definite at the point (1, −7) 

and so (1, −7) is the point of local minimum for the function 𝑓. It 

may be verified that the Hessian matrix at the point (−6,0) has 

one positive and one negative eigenvalue and hence the point 

(−6,0) is neither the point of local minimum nor the point of local 

maximum. 

Summary 

We introduced the concept of eigenvalues and eigenvectors 

through the eigenvalue problem and discussed the method of 

computing eigenvalues and eigenvectors of a square matrix. We 

showed how a symmetric matrix can be diagonalized through an 

orthogonal matrix which is constructed with the help of its 

orthonormal eigenvectors and discussed the importance of such 
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diagonalization process. In the final part of this module we tried 

to understand what quadratic forms are and how they are linked 

with the concept of eigenvalues while studying the nature of 

extreme points of a multivariate function. 

 

THANK YOU. 

 

 

 

 

 

 


