

[Glossary] [Eigenvalues and Quadratic Forms]

Subject:	Business Economics	
Course:	B.A., 6 th Semester, Undergraduate	
Paper No. & Title:	631 (Six Three One)	
	Advanced	Mathematical

Techniques

Mathematical

Unit No. & Title:

Unit - 1 Linear Algebra

Lecture No. & Title:

1 (One)

Eigenvalues and Quadratic Form

Glossary:

<u>Characteristic polynomial of a square matrix</u> Given a square matrix A or order n, its characteristic polynomial is the n^{th} degree polynomial

 $|A - \lambda I|$.

Characteristic equation of a square matrix

Given a square matrix A or order n, its characteristic equation is $|A - \lambda I| = 0$.

Eigenvalues and Eigenvectors (Characteristic roots and Characteristic vectors) of a square matrix

Let A be a square matrix of order n. A real number λ is called an eigenvalue of the matrix A if there exists a non-zero (column) vector $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ in \mathbb{R}^n satisfying $Ax = \lambda x$ The vector x is called an eigenvector

of the matrix A associated to the eigenvalue λ .

Symmetric matrix

A square matrix $A = [a_{ij}]$ is said to be symmetric if $A = A^T$ or in other words if $a_{ij} = a_{ji}$ for all *i* and *j*.

Non-singular or Invertible matrix

Let A be a square matrix. Then A is said to be non-singular or invertible if there exists a matrix B such that AB = BA = I. Here B is called the inverse of A and it is denoted by A^{-1} .

Orthogonal matrix

Let A be a square matrix. Then A is said to be orthogonal if $A^{-1} = A^T$

Diagonal matrix:

A square matrix $A = [a_{ij}]$ is said to be a diagonal matrix if all its nondiagonal elements are zero or in other words if

 $a_{ij} = 0$ whenever $i \neq j$.

Similar Matrices:

Let A and B be square matrices of the same order. If there exists an invertible matrix P such that $P^{-1}AP = B$ then we say that A and B are similar matrices.

Trace of a matrix

For a square matrix $A = [a_{ij}]$ its trace is defined as the sum of its diagonal elements.

Linearly independent vectors

Let $v_1, v_2, ..., v_k$ be vectors of \mathbb{R}^n . These k vectors are termed as linearly independent if there does not exist real scalars $\alpha_1, \alpha_2, ..., \alpha_k$ (not all zero) such that $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0$.

Orthogonal and Orthonormal vectors

Consider two vectors $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y, ..., y_n)$ of \mathbb{R}^n . These two vectors are called orthogonal if their inner product is zero or in other words if

 $x^T y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = 0.$ Additionally if $x^T x = y^T y = 1$ then the vectors are called orthonormal.

<u>Rank of a matrix</u> Rank of a matrix is defined as the number of linearly independent row or column vectors.

Diagonalizable matrix

Let A be a square matrix. Then it is called a diagonalizable matrix if it is similar to a diagonal matrix or in other words if we can find an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

Quadratic form Consider a square matrix $A = [a_{ij}]$ of order n and a column vector $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ in \mathbb{R}^n . Then the quadratic form associated with the matrix $A = [a_{ij}]$ is an expression of the form $q(x) = x^T A x = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$.

<u>Hessian matrix</u>

For a real-valued function $f(x_1, x_2, ..., x_n)$ if all its second order partial derivatives exist and are continuous over the domain of the function, then its Hessian matrix is a square matrix of order n given by

$$H = [f_{ij}]$$

where
$$f_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$$
.



